api_train_v2.py 6.0 KB
Newer Older
D
dangqingqing 已提交
1 2
import sys
import math
D
update  
dangqingqing 已提交
3
import numpy as np
D
dangqingqing 已提交
4
import paddle.v2 as paddle
D
dangqingqing 已提交
5
import paddle.v2.dataset.conll05 as conll05
D
dangqingqing 已提交
6

D
update  
dangqingqing 已提交
7 8
UNK_IDX = 0

D
dangqingqing 已提交
9

D
dangqingqing 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
def db_lstm():
    word_dict, verb_dict, label_dict = conll05.get_dict()
    word_dict_len = len(word_dict)
    label_dict_len = len(label_dict)
    pred_len = len(verb_dict)
    print 'word_dict_len,', word_dict_len
    print 'label_dict_len,', label_dict_len
    print 'pred_len,', pred_len

    mark_dict_len = 2
    word_dim = 32
    mark_dim = 5
    hidden_dim = 512
    depth = 8

    #8 features
    def d_type(size):
        return paddle.data_type.integer_value_sequence(size)

    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

    target = paddle.layer.data(name='target', type=d_type(label_dict_len))

    default_std = 1 / math.sqrt(hidden_dim) / 3.0

    emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
    std_0 = paddle.attr.Param(initial_std=0.)
    std_default = paddle.attr.Param(initial_std=default_std)

    predicate_embedding = paddle.layer.embedding(
        size=word_dim,
        input=predicate,
        param_attr=paddle.attr.Param(
            name='vemb', initial_std=default_std))
    mark_embedding = paddle.layer.embedding(
        size=mark_dim, input=mark, param_attr=std_0)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
        paddle.layer.embedding(
            size=word_dim, input=x, param_attr=emb_para) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    mix_hidden_lr = 1e-3
    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

    crf_cost = paddle.layer.crf(size=label_dict_len,
                                input=feature_out,
                                label=target,
                                param_attr=paddle.attr.Param(
                                    name='crfw',
                                    initial_std=default_std,
                                    learning_rate=mix_hidden_lr))

    crf_dec = paddle.layer.crf_decoding(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))

    return crf_cost, crf_dec
D
dangqingqing 已提交
135 136


D
update  
dangqingqing 已提交
137 138
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
D
dangqingqing 已提交
139
        f.read(16)  # skip header.
D
update  
dangqingqing 已提交
140 141 142
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


D
dangqingqing 已提交
143 144 145 146
def main():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
D
dangqingqing 已提交
147
    crf_cost, crf_dec = db_lstm()
D
update  
dangqingqing 已提交
148

D
dangqingqing 已提交
149
    # create parameters
D
update  
dangqingqing 已提交
150
    parameters = paddle.parameters.create([crf_cost, crf_dec])
D
dangqingqing 已提交
151 152 153 154 155 156 157 158

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(
            average_window=0.5, max_average_window=10000), )
D
dangqingqing 已提交
159 160 161

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
D
update  
dangqingqing 已提交
162 163 164
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
D
dangqingqing 已提交
165

D
update  
dangqingqing 已提交
166 167 168
    trainer = paddle.trainer.SGD(cost=crf_cost,
                                 parameters=parameters,
                                 update_equation=optimizer)
D
dangqingqing 已提交
169
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
D
update  
dangqingqing 已提交
170 171 172

    trn_reader = paddle.reader.batched(
        paddle.reader.shuffle(
D
dangqingqing 已提交
173 174
            conll05.test, buf_size=8192), batch_size=10)

D
dangqingqing 已提交
175
    trainer.train(
D
dangqingqing 已提交
176
        reader=trn_reader, event_handler=event_handler, num_passes=10000)
D
dangqingqing 已提交
177 178 179 180


if __name__ == '__main__':
    main()