flat.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numbers
import numpy as np

try:
    from collections.abc import Sequence, Mapping
except:
    from collections import Sequence, Mapping

FIELD_PREFIX = "_paddle_field_"


def _flatten_batch(batch):
    """
    For lod_blocking_queue only receive tensor array, flatten batch
    data, extract numpy.array data out as a list of numpy.array to
    send to lod_blocking_queue, and save the batch data structure
    such as fields in other types (str, int, etc) or key-value map
    of dictionaries
    """

    def _flatten(batch, flat_batch, structure, field_idx):
        if isinstance(batch, Sequence):
            for field in batch:
                if isinstance(field, np.ndarray):
                    structure.append('{}{}'.format(FIELD_PREFIX, field_idx))
                    flat_batch.append(field)
                    field_idx += 1
                elif isinstance(field, paddle.Tensor):
                    structure.append('{}{}'.format(FIELD_PREFIX, field_idx))
                    flat_batch.append(field.numpy())
                    field_idx += 1
                elif isinstance(field, (str, bytes, numbers.Number)):
                    structure.append(field)
                elif isinstance(field, Sequence):
                    field_struct, field_idx = _flatten(field, flat_batch, [],
                                                       field_idx)
                    structure.append(field_struct)
                elif isinstance(field, Mapping):
                    field_struct, field_idx = _flatten(field, flat_batch, {},
                                                       field_idx)
                    structure.append(field_struct)
                else:
                    structure.append(field)
        elif isinstance(batch, Mapping):
            for k, field in batch.items():
                if isinstance(field, np.ndarray):
                    structure[k] = '{}{}'.format(FIELD_PREFIX, field_idx)
                    flat_batch.append(field)
                    field_idx += 1
                elif isinstance(field, paddle.Tensor):
                    structure[k] = '{}{}'.format(FIELD_PREFIX, field_idx)
                    flat_batch.append(field.numpy())
                    field_idx += 1
                elif isinstance(field, (str, bytes, numbers.Number)):
                    structure[k] = field
                elif isinstance(field, Sequence):
                    field_struct, field_idx = _flatten(field, flat_batch, [],
                                                       field_idx)
                    structure[k] = field_struct
                elif isinstance(field, Mapping):
                    field_struct, field_idx = _flatten(field, flat_batch, {},
                                                       field_idx)
                    structure[k] = field_struct
                else:
                    structure[k] = field
        else:
            raise TypeError("wrong flat data type: {}".format(type(batch)))

        return structure, field_idx

    # sample only contains single fields
    if not isinstance(batch, Sequence):
        flat_batch = []
        structure, _ = _flatten([batch], flat_batch, [], 0)
        return flat_batch, structure[0]
    flat_batch = []
    structure, _ = _flatten(batch, flat_batch, [], 0)
    return flat_batch, structure


def _restore_batch(flat_batch, structure):
    """
    After reading list of Tensor data from lod_blocking_queue outputs,
    use this function to restore the batch data structrue, replace
    :attr:`_paddle_field_x` with data from flat_batch
    """

    def _restore(structure, field_idx):
        if isinstance(structure, Sequence):
            for i, field in enumerate(structure):
                if isinstance(field, str) and field.startswith(FIELD_PREFIX):
                    cur_field_idx = int(field.replace(FIELD_PREFIX, ''))
                    field_idx = max(field_idx, cur_field_idx)
                    assert flat_batch[cur_field_idx] is not None, \
                                "flat_batch[{}] parsed repeatly"
                    structure[i] = flat_batch[cur_field_idx]
                    flat_batch[cur_field_idx] = None
                elif isinstance(field, (str, bytes, numbers.Number)):
                    continue
                elif isinstance(field, (Sequence, Mapping)):
                    field_idx = _restore(structure[i], field_idx)
        elif isinstance(structure, Mapping):
            for k, field in structure.items():
                if isinstance(field, str) and field.startswith(FIELD_PREFIX):
                    cur_field_idx = int(field.replace(FIELD_PREFIX, ''))
                    field_idx = max(field_idx, cur_field_idx)
                    assert flat_batch[cur_field_idx] is not None, \
                                "flat_batch[{}] parsed repeatly"
                    structure[k] = flat_batch[cur_field_idx]
                    flat_batch[cur_field_idx] = None
                elif isinstance(field, (str, bytes, numbers.Number)):
                    continue
                elif isinstance(field, (Sequence, Mapping)):
                    field_idx = _restore(structure[k], field_idx)
        else:
            raise TypeError("wrong flat data type: {}".format(type(batch)))

        return field_idx

    assert isinstance(flat_batch, Sequence), \
            "flat_batch is not a list or tuple"

    # no np.array in dataset, no output tensor from blocking queue
    # simply return structure
    if len(flat_batch) == 0:
        return structure

    # sample only contains single fields
    if isinstance(structure, (str, bytes)):
        assert structure == '{}{}'.format(FIELD_PREFIX, 0), \
                "invalid structure: {}".format(structure)
        return flat_batch[0]
    field_idx = _restore(structure, 0)
    assert field_idx + 1 == len(flat_batch), "Tensor parse incomplete"
    return structure