fill_constant_op.h 4.6 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <limits>
18 19
#include <sstream>
#include <string>
X
Xin Pan 已提交
20
#include <vector>
21

X
Xin Pan 已提交
22 23 24
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/operators/utils.h"
X
Xin Pan 已提交
26 27 28

namespace paddle {
namespace operators {
L
liym27 已提交
29 30 31

using Tensor = framework::Tensor;

X
Xin Pan 已提交
32 33 34 35 36 37
template <typename T>
class FillConstantKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
H
hong 已提交
38

39 40
    auto str_value = ctx.Attr<std::string>("str_value");
    auto float_value = ctx.Attr<float>("value");
X
Xin Pan 已提交
41 42 43 44 45
    auto force_cpu = ctx.Attr<bool>("force_cpu");
    framework::Tensor *tensor = nullptr;

    framework::Variable *out_var = ctx.OutputVar("Out");

46 47 48 49
    T value;
    if (str_value.empty()) {
      value = static_cast<T>(float_value);
    } else {
50 51 52 53 54
      // handle NaN/Inf first, which cannot be read from stream.
      if (str_value == "inf") {
        value = static_cast<T>(std::numeric_limits<double>::infinity());
      } else if (str_value == "nan") {
        value = static_cast<T>(std::numeric_limits<double>::quiet_NaN());
55
      } else {
56 57 58 59 60 61 62 63 64 65
        std::stringstream convert_stream(str_value);
        if (std::is_same<int64_t, T>::value) {
          int64_t tmp_value;
          convert_stream >> tmp_value;
          value = static_cast<T>(tmp_value);
        } else {
          double tmp_value;
          convert_stream >> tmp_value;
          value = static_cast<T>(tmp_value);
        }
66 67
      }
    }
W
wangchaochaohu 已提交
68 69 70 71 72 73 74 75 76 77
    if (ctx.HasInput("ValueTensor")) {
      auto *value_tensor = ctx.Input<framework::Tensor>("ValueTensor");
      PADDLE_ENFORCE_EQ(
          value_tensor->numel(), 1,
          platform::errors::InvalidArgument(
              "When use Tensor as value to set Tensor value in fill_cosntant, "
              "value input(ValueTensor) size must be 1, but get %d",
              value_tensor->numel()));
      const T *tensor_data = value_tensor->data<T>();
      framework::Tensor cpu_tensor;
78 79 80
      auto tmp_place = value_tensor->place();
      if (platform::is_gpu_place(tmp_place) ||
          platform::is_xpu_place(tmp_place)) {
W
wangchaochaohu 已提交
81 82 83 84 85
        TensorCopySync(*value_tensor, platform::CPUPlace(), &cpu_tensor);
        tensor_data = cpu_tensor.data<T>();
      }
      value = tensor_data[0];
    }
86
    auto shape = GetShape(ctx);
L
liym27 已提交
87

X
Xin Pan 已提交
88 89
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
L
liym27 已提交
90
      tensor->Resize(shape);
X
Xin Pan 已提交
91 92
    } else if (out_var->IsType<framework::SelectedRows>()) {
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
L
liym27 已提交
93
      tensor->Resize(shape);
X
Xin Pan 已提交
94
    } else {
95 96 97
      PADDLE_THROW(platform::errors::Unimplemented(
          "In fill constant Op, the output only supports SelectedRows and "
          "LoDTensor."));
X
Xin Pan 已提交
98 99
    }

100 101 102 103
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
    bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
    if (cpu_place) {
X
Xin Pan 已提交
104
      tensor->mutable_data(platform::CPUPlace(), data_type);
105 106 107 108 109 110
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
#ifdef PADDLE_WITH_CUDA
    if (!cpu_place) {
X
Xin Pan 已提交
111
      tensor->mutable_data(ctx.GetPlace(), data_type);
112 113 114
      math::SetConstant<platform::CUDADeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CUDADeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
X
Xin Pan 已提交
115
    }
116 117 118 119 120 121 122 123
#endif
#ifdef PADDLE_WITH_XPU
    if (!cpu_place) {
      tensor->mutable_data(ctx.GetPlace(), data_type);
      math::SetConstant<platform::XPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::XPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
124
#endif
X
Xin Pan 已提交
125 126 127 128
  }
};
}  // namespace operators
}  // namespace paddle