param_attr.py 7.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

Y
Yu Yang 已提交
15 16 17
from initializer import Initializer, Xavier, Constant
from regularizer import WeightDecayRegularizer

18 19 20 21
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24

class ParamAttr(object):
C
chengduoZH 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    """
    Parameter attributes object. To fine-tuning network training process, user
    can set parameter's attributes to control training details. Such as learning rate,
    regularization, trainable, do_model_average and the method to initialize param.


    Args:
        name(str): The parameter's name. Default None.
        initializer(Initializer): The method to initial this parameter. Default None.
        learning_rate(float): The parameter's learning rate. The learning rate when
            optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
            Default 1.0.
        regularizer(WeightDecayRegularizer): Regularization factor. Default None.
        trainable(bool): Whether this parameter is trainable. Default True.
        gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
            gradient. Default None.
        do_model_average(bool): Whether this parameter should do model average.
            Default False.

    Examples:
        .. code-block:: python

            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
                                            regularizer=fluid.L2Decay(1.0),
                                            trainable=True)
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
54 55 56 57 58
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
59
                 trainable=True,
W
wanghaoshuang 已提交
60
                 gradient_clip=None,
C
chengduoZH 已提交
61
                 do_model_average=False):
Y
Yu Yang 已提交
62 63 64 65 66
        self.name = name
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
F
fengjiayi 已提交
67
        self.gradient_clip = gradient_clip
W
wanghaoshuang 已提交
68
        self.model_average = do_model_average
Y
Yu Yang 已提交
69 70

    def set_default_initializer(self, initializer):
C
chengduoZH 已提交
71 72 73
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
74 75 76 77 78 79

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
80
        """
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90 91
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

    def set_default_param_initializer(self):
C
chengduoZH 已提交
92 93
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
94 95 96 97 98 99

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
100
        """
Y
Yu Yang 已提交
101 102 103
        self.set_default_initializer(Xavier())

    def set_default_bias_initializer(self):
C
chengduoZH 已提交
104 105
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
106 107 108 109 110 111

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
112
        """
Y
Yu Yang 已提交
113 114 115 116
        self.set_default_initializer(Constant(0.0))

    @staticmethod
    def to_attr(arg):
C
chengduoZH 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
131 132
        if arg is None:
            return ParamAttr()
133 134
        elif isinstance(arg, list) or isinstance(arg, tuple):
            return [ParamAttr.to_attr(a) for a in arg]
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148
        elif isinstance(arg, ParamAttr):
            return arg
        elif isinstance(arg, str) or isinstance(arg, unicode):
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
            return ParamAttr.to_attr(None) if arg else False
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

    def to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
149 150 151 152 153 154 155 156 157
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
158 159
        kwargs = {
            'name': self.name,
G
guosheng 已提交
160 161 162
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
163
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
164
            'trainable': self.trainable,
W
wanghaoshuang 已提交
165
            'gradient_clip_attr': self.gradient_clip,
W
wanghaoshuang 已提交
166
            'model_average': self.model_average
Y
Yu Yang 已提交
167 168 169 170
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
171 172 173 174


class WeightNormParamAttr(ParamAttr):
    """
C
chengduoZH 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    Used for weight Norm. Weight Norm is a reparameterization of the weight vectors
    in a neural network that decouples the length of those weight vectors from
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Args:
        dim(list): The parameter's name. Default None.
        kwargs: Any field in ParamAttr. Default None.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
                                 param_attr=WeightNormParamAttr(
                                      dim=None,
                                      name='weight_norm_param'))

G
guosheng 已提交
196 197 198
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
199
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
200 201 202 203 204 205
    # these paramters for inference.
    params_with_weight_norm = []

    def __init__(self, dim=None, **kwargs):
        super(WeightNormParamAttr, self).__init__(**kwargs)
        self.dim = dim