run_program_op_node.h 35.0 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"
20
#include "paddle/fluid/framework/variable_helper.h"
0
0x45f 已提交
21 22
#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/platform/profiler/event_tracing.h"
0
0x45f 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace details {
using Tensor = paddle::experimental::Tensor;

static std::vector<Tensor> DereferenceTensors(
    const std::vector<Tensor *> &tensor_ptr) {
  std::vector<Tensor> res;
  for (auto *t : tensor_ptr) {
    res.emplace_back(*t);
  }
  return res;
}

static std::vector<std::string> GetTensorsName(const std::vector<Tensor> &ins) {
  std::vector<std::string> in_names;
  for (auto &in_t : ins) {
    in_names.emplace_back(in_t.name());
  }
  return in_names;
}

static std::vector<std::string> GetTensorsName(
    const std::vector<Tensor *> &ins) {
  std::vector<std::string> in_names;
  for (auto *in_t : ins) {
    in_names.emplace_back(in_t->name());
  }
  return in_names;
}

static void CheckInputVarStatus(const Tensor &tensor) {
55 56
  PADDLE_ENFORCE_EQ(tensor.defined() && tensor.is_dense_tensor(),
                    true,
57 58 59 60 61
                    paddle::platform::errors::InvalidArgument(
                        "The input tensor %s of "
                        "RunProgram(Grad)Op holds "
                        "wrong type. Expect type is DenseTensor.",
                        tensor.name()));
0
0x45f 已提交
62

63 64 65 66 67 68 69 70
  PADDLE_ENFORCE_EQ(
      static_cast<phi::DenseTensor *>(tensor.impl().get())->IsInitialized(),
      true,
      paddle::platform::errors::InvalidArgument(
          "The tensor in input tensor %s of "
          "RunProgram(Grad)Op "
          "is not initialized.",
          tensor.name()));
0
0x45f 已提交
71 72 73 74 75
}

static void CheckOutputVarStatus(const paddle::framework::Variable &src_var,
                                 const Tensor &dst_tensor) {
  auto name = dst_tensor.name();
76 77
  PADDLE_ENFORCE_EQ(dst_tensor.defined(),
                    true,
0
0x45f 已提交
78
                    paddle::platform::errors::InvalidArgument(
79
                        "dst_tensor `%s` shall be defined.", name));
0
0x45f 已提交
80

81
  if (dst_tensor.is_dense_tensor()) {
0
0x45f 已提交
82
    auto &src_tensor = src_var.Get<phi::DenseTensor>();
83 84
    PADDLE_ENFORCE_EQ(phi::DenseTensor::classof(&src_tensor),
                      true,
0
0x45f 已提交
85 86 87 88 89
                      paddle::platform::errors::InvalidArgument(
                          "The output tensor %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is DenseTensor",
                          name));
90
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(),
91
                      true,
0
0x45f 已提交
92 93 94 95 96
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's internal "
                          "scope is not initialized.",
                          name));
97
  } else if (dst_tensor.is_selected_rows()) {
0
0x45f 已提交
98
    auto &src_tensor = src_var.Get<phi::SelectedRows>();
99 100
    PADDLE_ENFORCE_EQ(phi::SelectedRows::classof(&src_tensor),
                      true,
0
0x45f 已提交
101 102 103 104 105
                      paddle::platform::errors::InvalidArgument(
                          "The output tensodfr %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is SelectedRows",
                          name));
106 107
    PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                      true,
0
0x45f 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's "
                          "internal scope is not initialized.",
                          name));

  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The RunProgram(Grad)Op only support output "
        "variable of type LoDTensor or SelectedRows",
        name));
  }
}

static void ShareTensorsIntoScope(const std::vector<Tensor> &tensors,
                                  paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto name = tensors[i].name();
126
    if (name == "Fake_var") {
0
0x45f 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      continue;
    }
    auto *var = scope->Var(name);
    CheckInputVarStatus(tensors[i]);
    // share tensor
    auto tensor_base = tensors[i].impl();
    if (phi::DenseTensor::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::DenseTensor>();
      auto t = std::dynamic_pointer_cast<phi::DenseTensor>(tensor_base);
      *dst_tensor = *t;
    } else if (phi::SelectedRows::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::SelectedRows>();
      auto t = std::dynamic_pointer_cast<phi::SelectedRows>(tensor_base);
      *dst_tensor = *t;
    }
  }
}

static void ShareTensorsFromScope(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't find them in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
    auto &name = tensors[i]->name();
    if (name == paddle::framework::kEmptyVarName || name == "Fake_var" ||
        !global_block.HasVar(name)) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
    auto *var = scope->FindVar(name);
163 164 165 166 167 168
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
0
0x45f 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static void ShareTensorsFromScopeWithPartialBlock(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &forward_global_block,
    const paddle::framework::BlockDesc &backward_global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &name = tensors[i]->name();
    if (name == paddle::framework::kEmptyVarName || name == "Fake_var" ||
        (!forward_global_block.HasVar(name) &&
         !backward_global_block.HasVar(name))) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    auto *var = scope->FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

static void BuildScopeByBlock(
    const paddle::framework::InterpreterCore &interpreter_core,
    const paddle::framework::BlockDesc &block,
    paddle::framework::Scope *scope) {
  for (auto &var_desc : block.AllVars()) {
    auto var_name = var_desc->Name();
    if (var_name == paddle::framework::kEmptyVarName) {
      continue;
    }
    if (!scope->FindLocalVar(var_name)) {
      auto *ptr = scope->Var(var_name);
      InitializeVariable(ptr, var_desc->GetType());
      VLOG(2) << "Initialize Block Variable " << var_name;
    }
  }
  auto &data_transfer_added_vars =
      interpreter_core.GetVariableScope()->DataTransferAddedVars();
  for (size_t i = 0; i < data_transfer_added_vars.size(); i++) {
    auto *ptr = scope->Var(data_transfer_added_vars[i].first);
    InitializeVariable(ptr,
                       static_cast<paddle::framework::proto::VarType::Type>(
                           data_transfer_added_vars[i].second));
    VLOG(2) << "Initialize Transfer Added Variable "
            << data_transfer_added_vars[i].first;
  }
}

250 251 252 253 254 255
static void GcScope(paddle::framework::Scope *scope) {
  std::deque<std::shared_ptr<paddle::memory::Allocation>> *garbages =
      new std::deque<std::shared_ptr<paddle::memory::Allocation>>();

  for (auto &var : scope->LocalVars()) {
    if (var != nullptr) {
256 257 258
      if (var->IsType<phi::DenseTensor>()) {
        garbages->emplace_back(
            var->GetMutable<phi::DenseTensor>()->MoveMemoryHolder());
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      }
      if (var->IsType<phi::SelectedRows>()) {
        garbages->emplace_back(var->GetMutable<phi::SelectedRows>()
                                   ->mutable_value()
                                   ->MoveMemoryHolder());
      }
      if (var->IsType<paddle::framework::LoDTensorArray>()) {
        auto *lod_tensor_arr =
            var->GetMutable<paddle::framework::LoDTensorArray>();
        for (auto &t : *lod_tensor_arr) {
          garbages->emplace_back(t.MoveMemoryHolder());
        }
        lod_tensor_arr->clear();
      }
    }
  }
  delete garbages;  // free mem
}

0
0x45f 已提交
278 279 280 281 282 283 284 285 286 287
}  // namespace details

inline void RunProgramAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    std::vector<paddle::experimental::Tensor *> &out,     // NOLINT
    std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    std::vector<paddle::experimental::Tensor *> &dout,    // NOLINT
    const paddle::framework::AttributeMap &attrs) {
  VLOG(2) << "RunProgramOpKernel Compute";
0
0x45f 已提交
288 289 290 291 292
  // In the original run_program OP, the default value of the is_test
  // attribute is false, we should check if there is is_test parameter
  // in attrs
  auto is_test = false;
  if (attrs.count("is_test")) {
R
Ruibiao Chen 已提交
293
    is_test = PADDLE_GET_CONST(bool, attrs.at("is_test"));
0
0x45f 已提交
294
  }
R
Ruibiao Chen 已提交
295
  auto program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id"));
296
  auto place = egr::Controller::Instance().GetExpectedPlace();
0
0x45f 已提交
297 298 299 300 301

  // NOTE(chenweihang): In order not to add new variable type, use vector
  // here. Originally, here can use scope directly.
  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
302 303
      out_scope_vec->size(),
      1,
0
0x45f 已提交
304 305 306
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

307 308
  bool use_interpretorcore =
      PADDLE_GET_CONST(bool, attrs.at("use_interpretorcore"));
0
0x45f 已提交
309

310
  if (use_interpretorcore) {
Z
zhangbo9674 已提交
311
    VLOG(2) << "RunProgramOp use interpretercore to execute program.";
0
0x45f 已提交
312

313 314
    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();

0
0x45f 已提交
315 316 317
    auto input_names = details::GetTensorsName(x);
    auto output_names = details::GetTensorsName(out);
    auto dout_names = details::GetTensorsName(dout);
318 319 320 321 322 323 324 325 326 327

    auto *forward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
    auto *backward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("backward_global_block"));
    auto *forward_program = forward_global_block->Program();
    auto *backward_program = backward_global_block->Program();

    auto &interpretercore_info_cache =
        paddle::framework::InterpreterCoreInfoCache::Instance();
328 329
    std::shared_ptr<paddle::framework::InterpreterCore> interpreter_core =
        nullptr;
330
    if (!interpretercore_info_cache.Has(program_id, /*is_grad=*/false)) {
331 332 333 334
      paddle::platform::RecordEvent record_event(
          "create_new_interpretercore",
          paddle::platform::TracerEventType::UserDefined,
          1);
335 336 337
      VLOG(2) << "No interpretercore cahce, so create a new interpretercore "
                 "for program: "
              << program_id;
338
      // Step 1. share input_vars & parameters into scope
339 340
      details::ShareTensorsIntoScope(x, global_inner_scope);
      details::ShareTensorsIntoScope(params, global_inner_scope);
341
      // Step 2. create new interpretercore
342 343 344 345 346 347
      interpreter_core = paddle::framework::CreateInterpreterCoreInfoToCache(
          *forward_program,
          place,
          /*is_grad=*/false,
          program_id,
          global_inner_scope);
348 349 350 351 352 353 354 355 356 357 358 359 360
      // Step 3. get all eager gc vars
      std::set<std::string> skip_eager_delete_vars =
          paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet(
              *backward_program);
      // all out_vars are skip_eager_var
      skip_eager_delete_vars.insert(output_names.begin(), output_names.end());
      skip_eager_delete_vars.insert(dout_names.begin(), dout_names.end());
      // update interpretercore skip_gc_var
      interpreter_core->SetSkipGcVars(skip_eager_delete_vars);
      interpretercore_info_cache.UpdateSkipEagerDeleteVars(
          program_id, false, skip_eager_delete_vars);
      VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size();
    } else {
361 362 363 364
      paddle::platform::RecordEvent record_event(
          "get_interpretercore_cahce",
          paddle::platform::TracerEventType::UserDefined,
          1);
365 366 367 368
      VLOG(2) << "Get interpretercore cahce by program:" << program_id;
      // Step 1. get cache interpretercore
      auto &cached_value =
          interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/false);
369
      interpreter_core = cached_value.core_;
370
      // Step 2. update scope for cache interpretercore
371 372 373 374 375 376 377 378
      details::ShareTensorsIntoScope(x, global_inner_scope);
      details::ShareTensorsIntoScope(params, global_inner_scope);
      if (interpreter_core->GetVariableScope()->GetMutableScope() !=
          global_inner_scope) {
        details::BuildScopeByBlock(
            *interpreter_core.get(), *forward_global_block, global_inner_scope);
        interpreter_core->reset_scope(global_inner_scope);
      }
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    }

    // interpretercore run
    if (forward_global_block->OpSize() > 0) {
      paddle::platform::RecordEvent record_event(
          "interpreter_core_run",
          paddle::platform::TracerEventType::UserDefined,
          1);
      interpreter_core->Run({});
    }

    {
      paddle::platform::RecordEvent record_event(
          "fetch_and_gc", paddle::platform::TracerEventType::UserDefined, 1);
      // Get Output
394 395 396 397 398 399 400 401
      details::ShareTensorsFromScopeWithPartialBlock(out,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
      details::ShareTensorsFromScopeWithPartialBlock(dout,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
0
0x45f 已提交
402

403 404 405 406 407 408 409 410 411 412 413
      VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(
          out_scope_vec->front());

      if (is_test) {
        VLOG(4) << "is test, set this scope can reused";
        global_inner_scope->SetCanReuesd(true);
        details::GcScope(global_inner_scope);
      } else {
        VLOG(4) << "not test, set this scope can not reused";
        global_inner_scope->SetCanReuesd(false);
      }
414
    }
415

416
#ifdef PADDLE_WITH_MKLDNN
417
    if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
418
#endif
419 420
  } else {
    VLOG(2) << "RunProgramOp execute with parallel_executor.";
421 422 423 424 425 426 427 428 429 430 431 432

    // Step 2. prepare executor and init persistable variables
    // NOTE(Aurelius84): While training some models, forward can be called many
    // times and then apply backpropagation all at once, such as Reinforcement
    // Learning. Tensor data in multi-step training should be saved into single
    // scope separately. Otherwise, the gradients can be miscalculated because
    // always using the Tensor data of the last step in forward.
    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
    VLOG(2) << "The number of sub scopes before forward: "
            << out_scope_vec->front()->kids().size();
    paddle::framework::Scope &scope = global_inner_scope->NewScope();

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    // share input_vars & parameters into scope
    details::ShareTensorsIntoScope(x, &scope);
    details::ShareTensorsIntoScope(params, &scope);

    const auto &place = egr::Controller::Instance().GetExpectedPlace();

    auto *global_block = PADDLE_GET_CONST(paddle::framework::BlockDesc *,
                                          attrs.at("global_block"));
    auto start_op_index = PADDLE_GET_CONST(int64_t, attrs.at("start_op_index"));
    auto end_op_index = PADDLE_GET_CONST(int64_t, attrs.at("end_op_index"));

    if (end_op_index > start_op_index) {
      auto input_names = details::GetTensorsName(x);
      auto output_names = details::GetTensorsName(out);
      auto dout_names = details::GetTensorsName(dout);
      auto *program = global_block->Program();

      auto cache_info =
          paddle::framework::GetExecutorInfoFromCache(*program,
                                                      place,
                                                      start_op_index,
                                                      end_op_index,
                                                      /*is_grad=*/false,
                                                      program_id,
                                                      &scope);
      auto &parallel_executor = cache_info.first;
      // all out_vars are skip_eager_var
      auto &skip_eager_delete_vars =
          paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
              program_id, false);
      if (cache_info.second /*is_new_created*/) {
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_names);
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      output_names.begin(),
                                      output_names.end());
        skip_eager_delete_vars.insert(
            skip_eager_delete_vars.end(), dout_names.begin(), dout_names.end());
        paddle::framework::details::ParseSafeEagerDeletionSkipVars(
            *program, end_op_index, output_names, &skip_eager_delete_vars);
      }

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
    }
    // Step 4. Get Output
    details::ShareTensorsFromScope(out, *global_block, &scope);
    details::ShareTensorsFromScope(dout, *global_block, &scope);

    // Debug info: scope info when run end
    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
    // Step 5. Drop all children scopes while testing.
    if (is_test) {
      out_scope_vec->front()->DropKids();
    }
    VLOG(2) << "The number of sub scopes after forward: "
            << out_scope_vec->front()->kids().size();
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
#endif
  }
0
0x45f 已提交
493 494 495 496 497 498 499 500 501 502
}

inline void RunProgramGradAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    const std::vector<paddle::experimental::Tensor> &out_grad,
    const std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    const paddle::framework::AttributeMap &attrs,
    std::vector<paddle::experimental::Tensor *> &x_grad,      // NOLINT
    std::vector<paddle::experimental::Tensor *> &params_grad  // NOLINT
503
) {
0
0x45f 已提交
504 505 506
  // if all output vars are set to stop_gradient, grad op no need to executed
  if (x_grad.empty() && params_grad.empty()) return;

507 508
  bool use_interpretorcore =
      PADDLE_GET_CONST(bool, attrs.at("use_interpretorcore"));
R
Ruibiao Chen 已提交
509
  auto program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id"));
0
0x45f 已提交
510 511 512

  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
513 514
      out_scope_vec->size(),
      1,
0
0x45f 已提交
515 516 517
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

518 519 520
  auto place = egr::Controller::Instance().GetExpectedPlace();

  if (use_interpretorcore) {
Z
zhangbo9674 已提交
521
    VLOG(2) << "RunProgramGradOp use interpretercore to execute program.";
522

523 524
    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();

525 526 527 528 529
    auto *forward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
    auto *backward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("backward_global_block"));
    auto *backward_program = backward_global_block->Program();
0
0x45f 已提交
530 531

    auto out_grad_names = details::GetTensorsName(out_grad);
532 533
    auto &interpretercore_info_cache =
        paddle::framework::InterpreterCoreInfoCache::Instance();
534 535
    std::shared_ptr<paddle::framework::InterpreterCore> interpreter_core =
        nullptr;
536
    if (!interpretercore_info_cache.Has(program_id, /*is_grad=*/true)) {
537 538 539 540
      paddle::platform::RecordEvent record_event(
          "create_new_interpretercore",
          paddle::platform::TracerEventType::UserDefined,
          1);
541
      VLOG(2) << "No interpretercore cahce, so create a new interpretercore";
542
      details::ShareTensorsIntoScope(out_grad, global_inner_scope);
543 544 545 546 547 548 549 550 551 552
      interpreter_core = paddle::framework::CreateInterpreterCoreInfoToCache(
          *backward_program,
          place,
          /*is_grad=*/true,
          program_id,
          global_inner_scope);

      // share threadpool
      // NOTE(zhiqiu): this only works interpreter_core is executed strictly
      // after the related fwd_interpreter_core.
553 554 555 556 557 558 559 560
      if (interpretercore_info_cache.Has(program_id, false)) {
        auto fwd_interpreter_core =
            interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/false)
                .core_;
        interpreter_core->ShareWorkQueueFrom(fwd_interpreter_core);
        VLOG(4) << "Share workqueue from " << fwd_interpreter_core.get()
                << " to " << interpreter_core.get();
      }
561 562 563 564 565 566 567 568 569

      std::vector<std::string> x_grad_names;
      std::vector<std::string> param_grad_names;
      if (!x_grad.empty()) {
        x_grad_names = details::GetTensorsName(x_grad);
      }
      if (!params_grad.empty()) {
        param_grad_names = details::GetTensorsName(params_grad);
      }
570 571 572 573 574
      // get all eager gc vars
      std::set<std::string> skip_eager_delete_vars;
      // all out_vars are skip_eager_var
      skip_eager_delete_vars.insert(x_grad_names.begin(), x_grad_names.end());
      // initialize skip gc vars by forward_program and backward_program
0
0x45f 已提交
575 576
      paddle::framework::details::AppendSkipDeletionVars(
          param_grad_names, &skip_eager_delete_vars);
577 578 579 580 581
      interpreter_core->SetSkipGcVars(skip_eager_delete_vars);
      interpretercore_info_cache.UpdateSkipEagerDeleteVars(
          program_id, /*is_grad=*/true, skip_eager_delete_vars);
      VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size();
    } else {
582 583 584 585
      paddle::platform::RecordEvent record_event(
          "get_interpretercore_cahce",
          paddle::platform::TracerEventType::UserDefined,
          1);
586 587 588
      VLOG(2) << "Get interpretercore cahce by program:" << program_id;
      auto &cached_value =
          interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/true);
589 590
      interpreter_core = cached_value.core_;

591
      // update scope
592 593 594 595 596 597 598 599
      details::ShareTensorsIntoScope(out_grad, global_inner_scope);
      if (interpreter_core->GetVariableScope()->GetMutableScope() !=
          global_inner_scope) {
        details::BuildScopeByBlock(*interpreter_core.get(),
                                   *backward_global_block,
                                   global_inner_scope);
        interpreter_core->reset_scope(global_inner_scope);
      }
600
    }
601

602
    if (backward_global_block->OpSize() > 0) {
603 604 605 606
      paddle::platform::RecordEvent record_event(
          "interpreter_core_run",
          paddle::platform::TracerEventType::UserDefined,
          1);
607 608 609 610
      // Debug info: scope info when run end
      VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(
          out_scope_vec->front());
      interpreter_core->Run({});
611
    }
612

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    {
      paddle::platform::RecordEvent record_event(
          "fetch_and_gc", paddle::platform::TracerEventType::UserDefined, 1);
      // Step 4. get outputs
      details::ShareTensorsFromScopeWithPartialBlock(x_grad,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
      details::ShareTensorsFromScopeWithPartialBlock(params_grad,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
      VLOG(4) << "after backward gc all vars";
      global_inner_scope->SetCanReuesd(true);
      details::GcScope(global_inner_scope);
    }
629
  } else {
630 631 632 633 634 635 636 637 638 639 640 641 642
    VLOG(2) << "RunProgramGradOp use pe to execute program.";

    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
    auto sub_scope_num = global_inner_scope->kids().size();
    VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
    PADDLE_ENFORCE_GT(sub_scope_num,
                      0,
                      paddle::platform::errors::InvalidArgument(
                          "The OutScope of RunProgramGradOp should hold at "
                          "least one sub scope."));

    auto &scope = *(global_inner_scope->kids().front());

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    auto *global_block = PADDLE_GET_CONST(paddle::framework::BlockDesc *,
                                          attrs.at("global_block"));
    auto orig_end_op_index =
        PADDLE_GET_CONST(int64_t, attrs.at("end_op_index"));

    // NOTE: skip `shape` and `fill_constant` op created by
    // fluid.backward.gradients, one forward output will generate one `shape`
    // and `fill_constant`
    int64_t start_op_index = orig_end_op_index + (out_grad.size() * 2);
    int64_t end_op_index = global_block->OpSize();

    if (end_op_index > start_op_index) {
      auto out_grad_names = details::GetTensorsName(out_grad);
      // Step 2. prepare executor and scope
      auto *program = global_block->Program();
      auto cache_info =
          paddle::framework::GetExecutorInfoFromCache(*program,
                                                      place,
                                                      start_op_index,
                                                      end_op_index,
                                                      /*is_grad*/ true,
                                                      program_id,
                                                      &scope);
      auto &parallel_executor = cache_info.first;

      auto &skip_eager_delete_vars =
          paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
              program_id, true);
      if (cache_info.second /*is_new_created*/) {
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, out_grad_names);
673 674 675 676 677 678 679 680 681 682 683
        // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
        //   SetOutput will set to None if the input var stop_gradient=True,
        //   it will cause an NotFound error when ctx.OutputNames() is called
        std::vector<std::string> x_grad_names;
        std::vector<std::string> param_grad_names;
        if (!x_grad.empty()) {
          x_grad_names = details::GetTensorsName(x_grad);
        }
        if (!params_grad.empty()) {
          param_grad_names = details::GetTensorsName(params_grad);
        }
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      x_grad_names.begin(),
                                      x_grad_names.end());
        paddle::framework::details::AppendSkipDeletionVars(
            param_grad_names, &skip_eager_delete_vars);
      }

      details::ShareTensorsIntoScope(out_grad, &scope);
      // Debug info: scope info when run end
      VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(
          out_scope_vec->front());

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(
          /*skip_eager_delete_vars=*/skip_eager_delete_vars);
0
0x45f 已提交
699 700
    }

701 702 703
    // Step 4. get outputs
    details::ShareTensorsFromScope(x_grad, *global_block, &scope);
    details::ShareTensorsFromScope(params_grad, *global_block, &scope);
0
0x45f 已提交
704

705 706 707 708
    // Step5. drop current scope
    global_inner_scope->DeleteScope(&scope);
    VLOG(2) << "The number of sub scopes after backward: "
            << global_inner_scope->kids().size();
0
0x45f 已提交
709 710 711 712 713 714 715 716 717 718
  }
}

class GradNodeRunProgram : public egr::GradNodeBase {
 public:
  GradNodeRunProgram(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}

  ~GradNodeRunProgram() override = default;
  // Functor: perform backward computations
719 720 721 722
  virtual paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                                  egr::kSlotSmallVectorSize> &grads,  // NOLINT
723 724
             bool create_graph,
             bool is_new_grad) override {
0
0x45f 已提交
725
    VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram";
726 727 728
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         egr::kSlotSmallVectorSize>
        hooked_grads = GradNodeRunProgram::ApplyGradientHooks(grads);
729 730
    PADDLE_ENFORCE_EQ(hooked_grads.size(),
                      1,
731 732 733
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads.size() of RunProgramGradOp should "
                          "be equal to 1."));
0
0x45f 已提交
734 735 736 737 738

    std::vector<paddle::experimental::Tensor> x_grad;
    std::vector<paddle::experimental::Tensor> params_grad;
    std::vector<paddle::experimental::Tensor *> x_grad_ptr;
    std::vector<paddle::experimental::Tensor *> params_grad_ptr;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
    {
      paddle::platform::RecordEvent record_event(
          "construct_grad_tensor",
          paddle::platform::TracerEventType::UserDefined,
          1);

      egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&hooked_grads[0],
                                                         this->InputMeta()[0]);
      VLOG(3) << "hooked_grads[0].size() : " << hooked_grads[0].size();
      ConstructXGradTensors(x_, &x_grad);
      ConstructParamGradTensors(params_, &params_grad);
      for (auto &i : x_grad) {
        x_grad_ptr.emplace_back(&i);
      }
      for (auto &i : params_grad) {
        if (i.defined()) {
          params_grad_ptr.emplace_back(&i);
        }
0
0x45f 已提交
757
      }
0
0x45f 已提交
758 759
    }

760 761
    PADDLE_ENFORCE_EQ(hooked_grads[0].size(),
                      fwd_out_names_.size(),
762 763 764
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads[0].size() and "
                          "fwd_out_names_.size() should be equal."));
0
0x45f 已提交
765
    for (size_t i = 0; i < fwd_out_names_.size(); ++i) {
766
      hooked_grads[0][i].set_name(fwd_out_names_[i] + "@GRAD");
0
0x45f 已提交
767
    }
768 769 770 771 772 773 774
    RunProgramGradAPI(x_,
                      params_,
                      hooked_grads[0],
                      step_scope_,
                      attrs_,
                      x_grad_ptr,
                      params_grad_ptr);
0
0x45f 已提交
775 776 777 778
    VLOG(3) << "End Eager Backward Node: GradNodeRunProgram";
    return {x_grad, params_grad};
  }

779 780
  void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }

0
0x45f 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
  // SetAttrMap
  void SetAttrMap(const paddle::framework::AttributeMap &attrs) {
    attrs_ = attrs;
  }

  void SetFwdX(const std::vector<paddle::experimental::Tensor> &tensors) {
    x_ = tensors;
  }

  void SetFwdParams(const std::vector<paddle::experimental::Tensor> &tensors) {
    params_ = tensors;
  }

  void SetStepScope(const std::vector<paddle::framework::Scope *> &scopes) {
    step_scope_ = scopes;
  }

  void SetFwdOutNames(std::vector<std::string> out_names) {
    fwd_out_names_ = out_names;
  }

 protected:
803 804 805
  void ConstructXGradTensors(
      const std::vector<paddle::experimental::Tensor> &x,
      std::vector<paddle::experimental::Tensor> *x_grad) {
0
0x45f 已提交
806 807
    // TODO(dev): Need an elegant way to determine inforamtion of grad_tensor,
    // such as: name, tensor type(DenseTensor or SelectedRows).
808 809 810 811 812
    for (auto &t : x) {
      if (t.is_dense_tensor()) {
        x_grad->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (t.is_selected_rows()) {
        x_grad->emplace_back(std::make_shared<phi::SelectedRows>());
813
      }
814
      x_grad->back().set_name(t.name() + "@GRAD");
0
0x45f 已提交
815 816 817
    }
  }

818 819 820 821 822
  void ConstructParamGradTensors(
      const std::vector<paddle::experimental::Tensor> &param,
      std::vector<paddle::experimental::Tensor> *param_grad) {
    for (auto &t : param) {
      auto t_grad = egr::EagerUtils::unsafe_autograd_meta(t)->Grad();
823 824 825
      // In eager mode, the number of param_grad should be the same as
      // param, so here an empty Tensor is added for the param with
      // stop_gradient=True
0
0x45f 已提交
826
      if (!t_grad.defined()) {
827 828 829 830 831 832 833
        param_grad->emplace_back();
      } else if (t_grad.is_dense_tensor()) {
        param_grad->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (t_grad.is_selected_rows()) {
        param_grad->emplace_back(std::make_shared<phi::SelectedRows>());
      }
      param_grad->back().set_name(t.name() + "@GRAD");
0
0x45f 已提交
834 835 836
    }
  }

837 838 839 840 841 842
  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<GradNodeRunProgram>(new GradNodeRunProgram(*this));
    return copied_node;
  }

0
0x45f 已提交
843 844 845 846 847 848 849 850 851 852 853
 private:
  // TensorWrappers
  std::vector<paddle::experimental::Tensor> x_;
  std::vector<paddle::experimental::Tensor> params_;
  std::vector<paddle::framework::Scope *> step_scope_;

  std::vector<std::string> fwd_out_names_;

  // Attribute Map
  paddle::framework::AttributeMap attrs_;
};