sum_op.cu 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaoyuchen2018 已提交
11 12 13

#include <paddle/fluid/platform/device_context.h>
#include "paddle/fluid/framework/op_registry.h"
14
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sum_op.h"
C
chengduo 已提交
16
#include "paddle/fluid/platform/float16.h"
17

Z
zhaoyuchen2018 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

using LoDTensor = framework::LoDTensor;

template <class T>
__global__ void Sum2CUDAKernel(const T *in_0, const T *in_1, T *out,
                               int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    out[id] = in_0[id] + in_1[id];
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumArrayCUDAKernel(T **in, T *out, int64_t N, size_t in_size,
                                   bool read_dst) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
42
    T total(read_dst ? out[id] : static_cast<T>(0));
Z
zhaoyuchen2018 已提交
43 44 45 46 47 48
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
        total += tmp[id];
      }
    }
49
    out[id] = total;
Z
zhaoyuchen2018 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out, int64_t N,
                                          size_t rows) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
        tmp_out[id] += tmp[id];
      }
    }
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumAlign4CUDAKernel(const T *in_0, const T *in_1, T *out,
                                    int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  for (int i = id; i < N / 4; i += blockDim.x * gridDim.x) {
    const float4 *in0_4 = reinterpret_cast<float4 *>(in_0);
    const float4 *in1_4 = reinterpret_cast<float4 *>(in_1);
    float4 tmp;
    tmp.x = in0_4[i].x + in1_4[i].x;
    tmp.y = in0_4[i].y + in1_4[i].y;
    tmp.z = in0_4[i].z + in1_4[i].z;
    tmp.w = in0_4[i].w + in1_4[i].w;
    reinterpret_cast<float4 *>(out)[i] = tmp;
  }
}

template <class T>
87
void SumToLoDTensor(const framework::ExecutionContext &context) {
Z
zhaoyuchen2018 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  auto in_vars = context.MultiInputVar("X");
  const size_t in_num = in_vars.size();

  constexpr size_t theory_sm_threads = 1024;
  auto &dev_ctx =
      context.template device_context<platform::CUDADeviceContext>();
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };

  auto *out = context.Output<LoDTensor>("Out");
114
  bool in_place = in_vars[0] == context.OutputVar("Out");
115

Z
zhaoyuchen2018 已提交
116
  if (!in_place) {
117 118 119 120 121 122 123
    auto *out_ptr = out->mutable_data<T>(context.GetPlace());
    if (in_num >= 1 && in_vars[0]->IsType<framework::LoDTensor>()) {
      auto &in_0_tensor = in_vars[0]->Get<framework::LoDTensor>();
      if (in_0_tensor.numel() > 0) {
        in_place = (in_0_tensor.data<T>() == out_ptr);
      }
    }
Z
zhaoyuchen2018 已提交
124 125
  }

126 127 128 129 130 131 132
  // Sum of two tensors
  if (in_num == 2 && in_vars[0]->IsType<framework::LoDTensor>() &&
      in_vars[1]->IsType<framework::LoDTensor>()) {
    auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
    auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();

    auto length = in_0.numel();
133
    if (length && in_0.IsInitialized() && in_1.IsInitialized()) {
134 135 136 137 138
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      auto in_0_e = EigenVector<T>::Flatten(in_0);
      auto in_1_e = EigenVector<T>::Flatten(in_1);
      result.device(place) = in_0_e + in_1_e;
139 140 141 142 143 144 145 146
    } else if (length && in_0.IsInitialized()) {
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_0);
    } else if (length && in_1.IsInitialized()) {
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_1);
Z
zhaoyuchen2018 已提交
147
    }
148
    return;
Z
zhaoyuchen2018 已提交
149
  }
150 151

  int start = in_place ? 1 : 0;
Z
zhaoyuchen2018 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  if (!in_place) {
    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
    constant_functor(
        context.template device_context<platform::CUDADeviceContext>(), out,
        static_cast<T>(0));
  }

  std::vector<const T *> in_data;
  std::vector<int> selectrow_index;
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
    if (in_vars[i]->IsType<framework::LoDTensor>()) {
      auto &in_i = in_vars[i]->Get<framework::LoDTensor>();
      in_data.emplace_back(in_i.data<T>());
      lod_length = in_i.numel();
    } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
      selectrow_index.push_back(i);
    }
  }

  // compute select rows seperately.
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
      auto &sr = in_vars[index]->Get<framework::SelectedRows>();
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

      PADDLE_ENFORCE_EQ(sr.height(), out_dims[0]);
      PADDLE_ENFORCE_EQ(row_numel, out->numel() / sr.height());

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
      auto tmp_sr_in_out_array =
201
          memory::Alloc(dev_ctx, sr_in_out_data.size() * sizeof(T *));
Z
zhaoyuchen2018 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

      memory::Copy(boost::get<platform::CUDAPlace>(dev_ctx.GetPlace()),
                   tmp_sr_in_out_array->ptr(), platform::CPUPlace(),
                   reinterpret_cast<void *>(sr_in_out_data.data()),
                   sr_in_out_data.size() * sizeof(T *), dev_ctx.stream());

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
      SumSelectedRowsCUDAKernel<T><<<grids, blocks, 0, stream>>>(
          sr_in_out_array_data, length, rows);
      dst_write = true;
    }
  }
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
219
    auto tmp_in_array = memory::Alloc(dev_ctx, in_data.size() * sizeof(T *));
Z
zhaoyuchen2018 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    memory::Copy(boost::get<platform::CUDAPlace>(dev_ctx.GetPlace()),
                 tmp_in_array->ptr(), platform::CPUPlace(),
                 reinterpret_cast<void *>(in_data.data()),
                 in_data.size() * sizeof(T *), dev_ctx.stream());

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(
        in_array_data, out->data<T>(), lod_length, in_data.size(),
        dst_write | in_place);
  }
}

template <typename T>
class SumKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto out_var = context.OutputVar("Out");

    if (out_var->IsType<framework::LoDTensor>()) {
242
      SumToLoDTensor<T>(context);
Z
zhaoyuchen2018 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255
    } else if (out_var->IsType<framework::SelectedRows>()) {
      SelectedRowsCompute<platform::CUDADeviceContext, T>(context);
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      LodTensorArrayCompute<platform::CUDADeviceContext, T>(context);
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
                   framework::ToTypeName(out_var->Type()));
    }
  }
};
}  // namespace operators
}  // namespace paddle

256
namespace ops = paddle::operators;
C
chengduo 已提交
257
namespace plat = paddle::platform;
Q
QI JUN 已提交
258 259 260 261
REGISTER_OP_CUDA_KERNEL(
    sum, ops::SumKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, int>,
C
chengduo 已提交
262 263
    ops::SumKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, plat::float16>);