op_registry.h 17.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#pragma once

17
#include <algorithm>
18
#include <atomic>
19
#include <memory>
Y
Yang Yang 已提交
20 21
#include <string>
#include <tuple>
Y
Yu Yang 已提交
22
#include <type_traits>
F
WIP  
fengjiayi 已提交
23
#include <typeinfo>
24 25
#include <unordered_map>
#include <unordered_set>
Y
Yu Yang 已提交
26

P
peizhilin 已提交
27
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
28 29
#include "gflags/gflags.h"
#include "glog/logging.h"  // For VLOG()
Y
Yi Wang 已提交
30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/details/op_registry.h"
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/shape_inference.h"
37

W
wanghuancoder 已提交
38 39 40 41 42 43
namespace paddle {
namespace framework {
class ExecutionContext;
}  // namespace framework
}  // namespace paddle

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
namespace paddle {
namespace framework {
namespace proto {

class BlockDesc;
class OpDesc;
class OpDesc_Attr;
class OpDesc_Var;
class OpProto;
class OpProto_Attr;
class OpProto_Var;
class OpVersion;
class OpVersionMap;
class OpVersionMap_OpVersionPair;
class ProgramDesc;
class VarDesc;
class VarType;
class VarType_LoDTensorArrayDesc;
class VarType_LoDTensorDesc;
class VarType_ReaderDesc;
class VarType_TensorDesc;
class VarType_Tuple;
class Version;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

71 72
DECLARE_bool(check_kernel_launch);

73 74
namespace paddle {
namespace framework {
X
Xin Pan 已提交
75

Y
Yu Yang 已提交
76 77 78 79
class Registrar {
 public:
  // In our design, various kinds of classes, e.g., operators and kernels,
  // have their corresponding registry and registrar. The action of
80 81
  // registration is in the constructor of a global registrar variable, which
  // are not used in the code that calls package framework, and would
Y
Yu Yang 已提交
82 83 84 85 86 87
  // be removed from the generated binary file by the linker. To avoid such
  // removal, we add Touch to all registrar classes and make USE_OP macros to
  // call this method. So, as long as the callee code calls USE_OP, the global
  // registrar variable won't be removed by the linker.
  void Touch() {}
};
88

89
template <typename... ARGS>
Y
Yu Yang 已提交
90
struct OperatorRegistrar : public Registrar {
91
  explicit OperatorRegistrar(const char* op_type) {
92 93 94 95
    PADDLE_ENFORCE_EQ(
        OpInfoMap::Instance().Has(op_type), false,
        platform::errors::AlreadyExists(
            "Operator '%s' is registered more than once.", op_type));
96 97
    static_assert(sizeof...(ARGS) != 0,
                  "OperatorRegistrar should be invoked at least by OpClass");
98
    OpInfo info;
99
    details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info);
Y
Yu Yang 已提交
100
    OpInfoMap::Instance().Insert(op_type, info);
101 102 103
  }
};

104 105
class OpRegistry {
 public:
H
hong 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  /**
   * @brief Return an OperatorBase constructed by type, inputs, outputs, attrs.
   *        In dygraph mode, inputs, output, attrs will be set to empty map to
   *        improve the execution efficiency of dygraph.
   *        Dygraph mode will use:
   *        framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
   *
   * @param[str] type               The operator type.
   * @param[map] inputs             Inputs map of the operator.
   * @param[map] outputs            Outputs map of the operator.
   * @param[unordered_map] attrs    Attributes map of the operator.
   * @param[bool] attr_check
   *            Whether do the attribute check before OperatorBase construction.
   *            Default is true.
   *            Attr_check is used to control the check of attribute map.
   *            The check of attribute map have two purposes:
   *            1. check whether the attribute item is valid or not.
   *            2. add attribute item which has default value
   *            if it is not in attrs.
   *            In dygraph mode, attrs is an empty unordered_map,
   *            attr_check is set to false, otherwise it will be failed
   *            when check function called.
   */
Y
Yu Yang 已提交
129
  static std::unique_ptr<OperatorBase> CreateOp(const std::string& type,
Y
Yu Yang 已提交
130 131
                                                const VariableNameMap& inputs,
                                                const VariableNameMap& outputs,
H
hong 已提交
132 133
                                                AttributeMap attrs,
                                                bool attr_check = true);
Y
Yu Yang 已提交
134

135
  static std::unique_ptr<OperatorBase> CreateOp(const proto::OpDesc& op_desc);
Y
Yu Yang 已提交
136

Y
Yu Yang 已提交
137
  static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
F
Fix bug  
fengjiayi 已提交
138
};
F
fengjiayi 已提交
139

140
template <typename PlaceType>
141
inline void CheckKernelLaunch(const char* op_type) {}
142 143 144 145 146

#ifdef PADDLE_WITH_CUDA
template <>
inline void CheckKernelLaunch<::paddle::platform::CUDAPlace>(
    const char* op_type) {
147 148 149 150
  if (FLAGS_check_kernel_launch) {
    PADDLE_ENFORCE_CUDA_LAUNCH_SUCCESS(op_type);
  }
}
151 152
#endif

153 154 155
template <typename PlaceType, bool at_end, size_t I, typename... KernelType>
struct OpKernelRegistrarFunctor;

156 157
template <typename PlaceType, typename T, typename Func>
inline void RegisterKernelClass(const char* op_type, const char* library_type,
X
Xin Pan 已提交
158
                                int customized_type_value, Func func) {
Y
yuyang18 已提交
159 160 161 162 163 164 165
  std::string library(library_type);
  std::string data_layout = "ANYLAYOUT";
  if (library == "MKLDNN") {
    data_layout = "MKLDNNLAYOUT";
  }
  OpKernelType key(ToDataType(std::type_index(typeid(T))), PlaceType(),
                   StringToDataLayout(data_layout),
X
Xin Pan 已提交
166
                   StringToLibraryType(library_type), customized_type_value);
167
  OperatorWithKernel::AllOpKernels()[op_type][key] = func;
Y
yuyang18 已提交
168 169
}

170 171 172 173
template <typename PlaceType, size_t I, typename... KernelTypes>
struct OpKernelRegistrarFunctor<PlaceType, false, I, KernelTypes...> {
  using KERNEL_TYPE =
      typename std::tuple_element<I, std::tuple<KernelTypes...>>::type;
174

X
Xin Pan 已提交
175 176
  void operator()(const char* op_type, const char* library_type,
                  int customized_type_value) const {
177
    using T = typename KERNEL_TYPE::ELEMENT_TYPE;
178
    RegisterKernelClass<PlaceType, T>(
X
Xin Pan 已提交
179 180
        op_type, library_type, customized_type_value,

181
        [op_type](const framework::ExecutionContext& ctx) {
Y
yuyang18 已提交
182
          KERNEL_TYPE().Compute(ctx);
183
          CheckKernelLaunch<PlaceType>(op_type);
184
        });
185 186
    constexpr auto size = std::tuple_size<std::tuple<KernelTypes...>>::value;
    OpKernelRegistrarFunctor<PlaceType, I + 1 == size, I + 1, KernelTypes...>
187
        func;
X
Xin Pan 已提交
188
    func(op_type, library_type, customized_type_value);
189 190 191 192 193
  }
};

template <typename PlaceType, size_t I, typename... KernelType>
struct OpKernelRegistrarFunctor<PlaceType, true, I, KernelType...> {
X
Xin Pan 已提交
194 195
  void operator()(const char* op_type, const char* library_type,
                  int customized_type_value) const {}
196 197
};

M
mozga-intel 已提交
198 199
// User can register many kernel in one place. The data type could be
// different.
200
template <typename PlaceType, typename... KernelType>
F
fengjiayi 已提交
201 202
class OpKernelRegistrar : public Registrar {
 public:
X
Xin Pan 已提交
203 204
  explicit OpKernelRegistrar(const char* op_type, const char* library_type,
                             int customized_type_value) {
205
    OpKernelRegistrarFunctor<PlaceType, false, 0, KernelType...> func;
X
Xin Pan 已提交
206
    func(op_type, library_type, customized_type_value);
F
fengjiayi 已提交
207 208 209
  }
};

Y
yuyang18 已提交
210 211 212 213 214 215
template <typename PlaceType, bool at_end, size_t I, typename... KernelType>
struct OpKernelRegistrarFunctorEx;

template <typename PlaceType, typename... DataTypeAndKernelType>
class OpKernelRegistrarEx : public Registrar {
 public:
X
Xin Pan 已提交
216 217
  explicit OpKernelRegistrarEx(const char* op_type, const char* library_type,
                               int customized_type_value) {
Y
yuyang18 已提交
218 219
    OpKernelRegistrarFunctorEx<PlaceType, false, 0, DataTypeAndKernelType...>
        func;
X
Xin Pan 已提交
220
    func(op_type, library_type, customized_type_value);
Y
yuyang18 已提交
221 222 223 224 225 226
  }
};

template <typename PlaceType, size_t I, typename... DataTypeAndKernelType>
struct OpKernelRegistrarFunctorEx<PlaceType, true, I,
                                  DataTypeAndKernelType...> {
X
Xin Pan 已提交
227 228
  void operator()(const char* op_type, const char* library_type,
                  int customized_type_value) const {}
Y
yuyang18 已提交
229 230 231 232 233
};

template <typename PlaceType, size_t I, typename... DataTypeAndKernelType>
struct OpKernelRegistrarFunctorEx<PlaceType, false, I,
                                  DataTypeAndKernelType...> {
234
  using Functor =
Y
yuyang18 已提交
235 236 237 238 239 240
      typename std::tuple_element<I + 1,
                                  std::tuple<DataTypeAndKernelType...>>::type;
  using T =
      typename std::tuple_element<I,
                                  std::tuple<DataTypeAndKernelType...>>::type;

X
Xin Pan 已提交
241 242
  void operator()(const char* op_type, const char* library_type,
                  int customized_type_value) const {
243 244 245 246 247 248 249
    RegisterKernelClass<PlaceType, T>(
        op_type, library_type, customized_type_value,

        [op_type](const framework::ExecutionContext& ctx) {
          Functor()(ctx);
          CheckKernelLaunch<PlaceType>(op_type);
        });
Y
yuyang18 已提交
250 251 252 253 254 255

    constexpr auto size =
        std::tuple_size<std::tuple<DataTypeAndKernelType...>>::value;
    OpKernelRegistrarFunctorEx<PlaceType, I + 2 >= size, I + 2,
                               DataTypeAndKernelType...>
        func;
X
Xin Pan 已提交
256
    func(op_type, library_type, customized_type_value);
Y
yuyang18 已提交
257 258 259
  }
};

X
Xin Pan 已提交
260
// clang-format off
261 262 263
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
264 265 266 267 268 269
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

270 271 272 273 274 275 276 277
/*
  The variadic arguments should be class types derived from one of the
  following classes:
    OpProtoAndCheckerMaker
    GradOpDescMakerBase
    VarTypeInference
    InferShapeBase
*/
Y
yuyang18 已提交
278 279 280 281 282 283 284 285 286
#define REGISTER_OPERATOR(op_type, op_class, ...)                        \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                        \
      __reg_op__##op_type,                                               \
      "REGISTER_OPERATOR must be called in global namespace");           \
  static ::paddle::framework::OperatorRegistrar<op_class, ##__VA_ARGS__> \
      __op_registrar_##op_type##__(#op_type);                            \
  int TouchOpRegistrar_##op_type() {                                     \
    __op_registrar_##op_type##__.Touch();                                \
    return 0;                                                            \
Y
Yu Yang 已提交
287 288
  }

F
WIP  
fengjiayi 已提交
289
#define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \
290
  REGISTER_OPERATOR(op_type, op_class, op_maker_class, \
H
hong 已提交
291 292
        paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,   \
        paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>)
D
dongzhihong 已提交
293

D
dongzhihong 已提交
294
/**
295
 * Macro to register OperatorKernel.
D
dongzhihong 已提交
296
 */
X
Xin Pan 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
#define REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(op_type, library_type,             \
                                            place_class, customized_name,      \
                                            customized_type_value, ...)        \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      __reg_op_kernel_##op_type##_##library_type##_##customized_name##__,      \
                                 "REGISTER_OP_KERNEL must be called in "       \
                                 "global namespace");                          \
  static ::paddle::framework::OpKernelRegistrar<place_class,                   \
                                                __VA_ARGS__>                   \
      __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__(\
          #op_type, #library_type, customized_type_value);                     \
  int TouchOpKernelRegistrar_##op_type##_##library_type##_##customized_name() {\
    __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__   \
        .Touch();                                                              \
    return 0;                                                                  \
F
fengjiayi 已提交
312
  }
D
dongzhihong 已提交
313

X
Xin Pan 已提交
314 315 316 317 318 319
#define REGISTER_OP_KERNEL(op_type, library_type, place_class, ...)   \
  REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(                                \
      op_type, library_type, place_class, DEFAULT_TYPE,               \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

320
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
321
#define REGISTER_OP_CUDA_KERNEL(op_type, ...) \
D
dzhwinter 已提交
322
  REGISTER_OP_KERNEL(op_type, CUDA, ::paddle::platform::CUDAPlace, __VA_ARGS__)
323 324 325
#else
#define REGISTER_OP_CUDA_KERNEL(op_type, ...)
#endif
F
fengjiayi 已提交
326

F
fengjiayi 已提交
327 328
#define REGISTER_OP_CPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
329

J
jianghaicheng 已提交
330 331 332
#define REGISTER_OP_IPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, IPU, ::paddle::platform::IPUPlace, __VA_ARGS__)

333 334 335
#define REGISTER_OP_XPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, XPU, ::paddle::platform::XPUPlace, __VA_ARGS__)

336 337 338
#define REGISTER_OP_NPU_KERNEL(op_type, ...) \
  REGISTER_OP_KERNEL(op_type, NPU, ::paddle::platform::NPUPlace, __VA_ARGS__)

X
Xin Pan 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
#define REGISTER_OP_KERNEL_EX(op_type, library_type, place_class,  \
                              customized_name,                     \
                              customized_type_value,               \
                              ...)                                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                  \
      __reg_op_kernel_##op_type##_##library_type##_##customized_name##__, \
                                 "REGISTER_OP_KERNEL_EX must be called in "  \
                                 "global namespace");  \
  static ::paddle::framework::OpKernelRegistrarEx<place_class,  \
                                                  __VA_ARGS__>  \
      __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__(\
          #op_type, #library_type, customized_type_value);  \
  int TouchOpKernelRegistrar_##op_type##_##library_type##_##customized_name() {\
    __op_kernel_registrar_##op_type##_##library_type##_##customized_name##__   \
        .Touch();                                                              \
    return 0;                                                                  \
Y
yuyang18 已提交
355 356
  }

357
#define REGISTER_OP_CUDA_KERNEL_FUNCTOR(op_type, ...)                 \
X
Xin Pan 已提交
358 359 360 361
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, CUDA, ::paddle::platform::CUDAPlace, DEFAULT_TYPE,     \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)
Y
yuyang18 已提交
362

X
Xin Pan 已提交
363 364 365 366 367
#define REGISTER_OP_CPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, CPU, ::paddle::platform::CPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)
Y
yuyang18 已提交
368

369 370 371 372 373 374
#define REGISTER_OP_XPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, XPU, ::paddle::platform::XPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

375 376 377 378 379 380
#define REGISTER_OP_NPU_KERNEL_FUNCTOR(op_type, ...)                  \
  REGISTER_OP_KERNEL_EX(                                              \
      op_type, NPU, ::paddle::platform::NPUPlace, DEFAULT_TYPE,       \
      ::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
      __VA_ARGS__)

381
/**
382 383
 * Macro to mark what Operator and Kernel
 * we will use and tell the compiler to
384 385
 * link them into target.
 */
D
dzhwinter 已提交
386 387 388 389 390 391
#define USE_OP_ITSELF(op_type)                             \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                          \
      __use_op_itself_##op_type,                           \
      "USE_OP_ITSELF must be called in global namespace"); \
  extern int TouchOpRegistrar_##op_type();                 \
  UNUSED static int use_op_itself_##op_type##_ = TouchOpRegistrar_##op_type()
F
fengjiayi 已提交
392

X
Xin Pan 已提交
393 394 395 396 397 398 399 400
#define USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(op_type,                     \
                                              LIBRARY_TYPE,                \
                                              customized_name)             \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                          \
      __use_op_kernel_##op_type##_##LIBRARY_TYPE##_##customized_name##__,  \
      "USE_OP_DEVICE_KERNEL must be in global namespace");                 \
  extern int                                                               \
      TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE##_##customized_name(); \
401
  UNUSED static int use_op_kernel_##op_type##_##LIBRARY_TYPE##_##customized_name##_ = /* NOLINT */ \
X
Xin Pan 已提交
402 403 404 405
      TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE##_##customized_name()

#define USE_OP_DEVICE_KERNEL(op_type, LIBRARY_TYPE) \
  USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(op_type, LIBRARY_TYPE, DEFAULT_TYPE)
Y
Yu Yang 已提交
406

407 408
// TODO(fengjiayi): The following macros
// seems ugly, do we have better method?
Y
Yu Yang 已提交
409

410
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
411
#define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
412
#else
413 414
#define USE_OP_KERNEL(op_type)        \
  USE_OP_DEVICE_KERNEL(op_type, CPU); \
Q
QI JUN 已提交
415
  USE_OP_DEVICE_KERNEL(op_type, CUDA)
Y
Yu Yang 已提交
416
#endif
417

418 419
#define USE_NO_KERNEL_OP(op_type) USE_OP_ITSELF(op_type);

F
WIP  
fengjiayi 已提交
420 421 422
#define USE_CPU_ONLY_OP(op_type) \
  USE_OP_ITSELF(op_type);        \
  USE_OP_DEVICE_KERNEL(op_type, CPU);
423

Q
QI JUN 已提交
424 425 426
#define USE_CUDA_ONLY_OP(op_type) \
  USE_OP_ITSELF(op_type);         \
  USE_OP_DEVICE_KERNEL(op_type, CUDA)
D
Dong Zhihong 已提交
427

F
WIP  
fengjiayi 已提交
428 429 430
#define USE_OP(op_type)   \
  USE_OP_ITSELF(op_type); \
  USE_OP_KERNEL(op_type)
X
Xin Pan 已提交
431
// clang-format on
432

433 434
}  // namespace framework
}  // namespace paddle