data_feed_desc.py 9.1 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format

__all__ = ['DataFeedDesc']


class DataFeedDesc(object):
    """
    Datafeed descriptor, describing input training data format. This class is
    currently only used for AsyncExecutor (See comments for class AsyncExecutor
    for a brief introduction)

27
    DataFeedDesc shall be initialized from a valid protobuf message from disk.
W
Wang Guibao 已提交
28 29 30 31

    See :code:`paddle/fluid/framework/data_feed.proto` for message definition.
    A typical message might look like:

32 33
    .. code-block:: python

34
      import paddle.fluid as fluid
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
      f = open("data.proto", "w")
      print >> f, 'name: "MultiSlotDataFeed"'
      print >> f, 'batch_size: 2'
      print >> f, 'multi_slot_desc {'
      print >> f, '    slots {'
      print >> f, '         name: "words"'
      print >> f, '         type: "uint64"'
      print >> f, '         is_dense: false'
      print >> f, '         is_used: true'
      print >> f, '     }'
      print >> f, '     slots {'
      print >> f, '         name: "label"'
      print >> f, '         type: "uint64"'
      print >> f, '         is_dense: false'
      print >> f, '         is_used: true'
      print >> f, '    }'
      print >> f, '}'
      f.close()
      data_feed = fluid.DataFeedDesc('data.proto')
W
Wang Guibao 已提交
54 55 56 57 58 59 60 61

    However, users usually shouldn't care about the message format; instead,
    they are encouragd to use :code:`Data Generator` as a tool to generate a
    valid data description, in the process of converting their raw log files to
    training files acceptable to AsyncExecutor.

    DataFeedDesc can also be changed during runtime. Once you got familiar with
    what each field mean, you can modify it to better suit your need. E.g.:
62 63 64

    .. code-block:: python

65
      import paddle.fluid as fluid
66 67 68 69
      data_feed = fluid.DataFeedDesc('data.proto')
      data_feed.set_batch_size(128)
      data_feed.set_dense_slots('wd')  # The slot named 'wd' will be dense
      data_feed.set_use_slots('wd')    # The slot named 'wd' will be used
W
Wang Guibao 已提交
70 71

    Finally, the content can be dumped out for debugging purpose:
72 73 74 75

    .. code-block:: python

      print(data_feed.desc())
W
Wang Guibao 已提交
76 77 78

    Args:
        proto_file(string): Disk file containing a data feed description.
79

W
Wang Guibao 已提交
80 81 82 83
    """

    def __init__(self, proto_file):
        self.proto_desc = data_feed_pb2.DataFeedDesc()
D
dongdaxiang 已提交
84
        self.proto_desc.pipe_command = "cat"
W
Wang Guibao 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97
        with open(proto_file, 'r') as f:
            text_format.Parse(f.read(), self.proto_desc)
        if self.proto_desc.name == "MultiSlotDataFeed":
            self.__name_to_index = {
                slot.name: i
                for i, slot in enumerate(self.proto_desc.multi_slot_desc.slots)
            }

    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

        Example:
98 99
            .. code-block:: python

100
              import paddle.fluid as fluid
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
              f = open("data.proto", "w")
              print >> f, 'name: "MultiSlotDataFeed"'
              print >> f, 'batch_size: 2'
              print >> f, 'multi_slot_desc {'
              print >> f, '    slots {'
              print >> f, '         name: "words"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '     }'
              print >> f, '     slots {'
              print >> f, '         name: "label"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '    }'
              print >> f, '}'
              f.close()
              data_feed = fluid.DataFeedDesc('data.proto')
              data_feed.set_batch_size(128)
W
Wang Guibao 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134

        Args:
            batch_size: batch size

        """
        self.proto_desc.batch_size = batch_size

    def set_dense_slots(self, dense_slots_name):
        """
        Set if a specific slot will be dense. Will be effective during training.
        features for a dense slot will be fed into a Tensor, while those for a
        sparse slot will be fed into a LoDTensor

        Example:
135 136
            .. code-block:: python

137
              import paddle.fluid as fluid
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
              f = open("data.proto", "w")
              print >> f, 'name: "MultiSlotDataFeed"'
              print >> f, 'batch_size: 2'
              print >> f, 'multi_slot_desc {'
              print >> f, '    slots {'
              print >> f, '         name: "words"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '     }'
              print >> f, '     slots {'
              print >> f, '         name: "label"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '    }'
              print >> f, '}'
              f.close()
              data_feed = fluid.DataFeedDesc('data.proto')
              data_feed.set_dense_slots(['words'])
W
Wang Guibao 已提交
158 159 160 161 162 163 164 165 166

        Args:
            dense_slots_name: a list of slot names which will be set dense

        Note:
            Default is sparse for all slots
        """
        if self.proto_desc.name != "MultiSlotDataFeed":
            raise ValueError(
167
                "Only MultiSlotDataFeed needs set_dense_slots, please check your datafeed.proto"
W
Wang Guibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
            )
        for name in dense_slots_name:
            self.proto_desc.multi_slot_desc.slots[self.__name_to_index[
                name]].is_dense = True

    def set_use_slots(self, use_slots_name):
        """
        Set if a specific slot will be used for training. A dataset shall
        contain a lot of features, through this function one can select which
        ones will be used for a specific model.

        Example:
180 181
            .. code-block:: python

182
              import paddle.fluid as fluid
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
              f = open("data.proto", "w")
              print >> f, 'name: "MultiSlotDataFeed"'
              print >> f, 'batch_size: 2'
              print >> f, 'multi_slot_desc {'
              print >> f, '    slots {'
              print >> f, '         name: "words"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '     }'
              print >> f, '     slots {'
              print >> f, '         name: "label"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '    }'
              print >> f, '}'
              f.close()
              data_feed = fluid.DataFeedDesc('data.proto')
              data_feed.set_use_slots(['words'])
W
Wang Guibao 已提交
203 204 205 206 207 208 209 210 211

        Args:
            use_slots_name: a list of slot names which will be used in training

        Note:
            Default is not used for all slots
        """
        if self.proto_desc.name != "MultiSlotDataFeed":
            raise ValueError(
212
                "Only MultiSlotDataFeed needs set_use_slots, please check your datafeed.proto"
W
Wang Guibao 已提交
213 214 215 216 217 218 219 220 221 222
            )
        for name in use_slots_name:
            self.proto_desc.multi_slot_desc.slots[self.__name_to_index[
                name]].is_used = True

    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

        Example:
223 224
            .. code-block:: python

225
              import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
              f = open("data.proto", "w")
              print >> f, 'name: "MultiSlotDataFeed"'
              print >> f, 'batch_size: 2'
              print >> f, 'multi_slot_desc {'
              print >> f, '    slots {'
              print >> f, '         name: "words"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '     }'
              print >> f, '     slots {'
              print >> f, '         name: "label"'
              print >> f, '         type: "uint64"'
              print >> f, '         is_dense: false'
              print >> f, '         is_used: true'
              print >> f, '    }'
              print >> f, '}'
              f.close()
              data_feed = fluid.DataFeedDesc('data.proto')
              print(data_feed.desc())
W
Wang Guibao 已提交
246 247 248 249 250

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)