rnn_op.cc 10.6 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/rnn_op.h"
G
Guo Sheng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"

namespace paddle {
namespace operators {

class RNNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "RNN");
    OP_INOUT_CHECK(ctx->HasInputs("PreState"), "Input", "PreState", "RNN");

    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "RNN");
    OP_INOUT_CHECK(ctx->HasOutputs("State"), "Output", "State", "RNN");

    auto in_dims = ctx->GetInputDim("Input");
    auto pre_state_dims = ctx->GetInputsDim("PreState");

    PADDLE_ENFORCE_EQ(in_dims.size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of Input in RNN  must be 3. But "
                          "received Input's rank is %d.",
                          in_dims.size()));

    if (ctx->HasInput("SequenceLength")) {
      auto seq_dims = ctx->GetInputDim("SequenceLength");
      PADDLE_ENFORCE_EQ(
          in_dims[1], seq_dims[0],
          platform::errors::InvalidArgument(
              "The size of SequenceLength has to equal the batch_size. But "
              "received batch_size is %d and the size of SequenceLength is %d.",
              in_dims[1], seq_dims[0]));
    }

    PADDLE_ENFORCE_EQ(pre_state_dims[0].size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of PreState in RNN  must be 3. But "
                          "the received rank is %d.",
                          pre_state_dims[0].size()));
    size_t i = 0;
    for (; i < pre_state_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          in_dims[1], pre_state_dims[i][1],
          platform::errors::InvalidArgument(
              "The second dimension size (representing for batch size) of "
              "Input and PreState should be equal. But received %d and %d.",
              in_dims[1], pre_state_dims[i][1]));
      PADDLE_ENFORCE_EQ(
          pre_state_dims[0], pre_state_dims[i],
          platform::errors::InvalidArgument(
              "The dims of all tensors in PreState should be same. But "
              "received PreState[0] is %s and PreState[%d] is %s.",
              pre_state_dims[0], i, pre_state_dims[i]));
    }
    auto mode = ctx->Attrs().Get<std::string>("mode");
    size_t num_state = mode == "LSTM" ? 2 : 1;
    PADDLE_ENFORCE_EQ(
        i, num_state,
        platform::errors::InvalidArgument(
            "The number of tensors in PreState of %s should be %d, "
            "but received %d.",
            mode, 2, i));

    auto out_dims = in_dims;
    auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
    bool is_bidirec = ctx->Attrs().Get<bool>("is_bidirec");
    out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
    ctx->SetOutputDim("Out", out_dims);
    ctx->SetOutputsDim("State", pre_state_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
  }
};

class RNNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
        "input_size and the hidden_size in the next may not be same");
    AddInput("PreState",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)")
        .AsDuplicable();
    AddInput("WeightList",
             "(vector<Tensor>), stores weight and bias data when the weight "
             "use the list format. ")
        .AsDuplicable();
    AddInput("SequenceLength",
             "(Tensor) When the input data is padding, "
             "set this parameter. This parameter represents "
             "the variable sequence lengths in a batch. "
             "The size of the vector has to equal the batch_size.")
        .AsDispensable();
    AddOutput("DropoutState",
              "Store the global drop state when training, needed by cudnn rnn.")
        .AsDispensable();
    // maybe need add intermediate outputs for cpu kernel
    AddOutput("Reserve",
              "(Tensor, a temporary output Tensor to store the reserve_data "
              "of cudnn kernel.")
        .AsIntermediate();
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
    AddOutput("State",
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)")
        .AsDuplicable();
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between rnn layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec", "whether it is bidirectional rnn")
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of rnn").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number").SetDefault(1);
    AddAttr<std::string>(
        "mode",
        "(string) rnn types, including: LSTM, GRU, RNN_RELU, RNN_TANH.");
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
    AddComment(R"DOC(
)DOC");
  }
};

class RNNGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "RNN");
    OP_INOUT_CHECK(ctx->HasInputs("PreState"), "Input", "PreState", "RNN");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "RNN");
    // OP_INOUT_CHECK(ctx->HasInputs("State"), "Input", "State", "RNN");

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
    if (ctx->HasOutputs(framework::GradVarName("WeightList"))) {
      ctx->SetOutputsDim(framework::GradVarName("WeightList"),
                         ctx->GetInputsDim("WeightList"));
    }
    if (ctx->HasOutputs(framework::GradVarName("PreState"))) {
      ctx->SetOutputsDim(framework::GradVarName("PreState"),
                         ctx->GetInputsDim("PreState"));
    }
  }
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class RNNGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rnn_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("PreState", this->Input("PreState"));
    op->SetInput("WeightList", this->Input("WeightList"));
    if (this->HasInput("SequenceLength")) {
      op->SetInput("SequenceLength", this->Input("SequenceLength"));
    }
    op->SetInput("DropoutState", this->Output("DropoutState"));
    op->SetInput("Reserve", this->Output("Reserve"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput(framework::GradVarName("State"), this->OutputGrad("State"));

    op->SetOutput(framework::GradVarName("WeightList"),
                  this->InputGrad("WeightList", false));

    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("PreState"),
                  this->InputGrad("PreState", false));
    op->SetAttrMap(this->Attrs());
  }
};

template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_THROW(platform::errors::Unimplemented(
        "CPU is not support for this kernel now. Will be add in the future"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(rnn, ops::RNNOp, ops::RNNOpMaker,
                  ops::RNNGradOpMaker<paddle::framework::OpDesc>,
                  ops::RNNGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(rnn_grad, ops::RNNGradOp);

255 256 257 258 259 260 261
REGISTER_OP_CPU_KERNEL(
    rnn, ops::RNNCPUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RNNCPUKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    rnn_grad, ops::RNNCPUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RNNCPUGradKernel<paddle::platform::CPUDeviceContext, double>);