uniform_random_op.cc 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/uniform_random_op.h"
L
Leo Chen 已提交
15

16
#include <string>
L
Leo Chen 已提交
17

Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
19
#include "paddle/fluid/framework/infershape_utils.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
22
#include "paddle/fluid/platform/bfloat16.h"
23
#include "paddle/phi/infermeta/nullary.h"
Y
yaoxuefeng 已提交
24

Y
Yu Yang 已提交
25 26
namespace paddle {
namespace operators {
Y
Yu Yang 已提交
27

28 29 30 31
namespace {
template <typename T>
inline void UniformRealDistribution(T *data, const int64_t &size,
                                    const float &min, const float &max,
32
                                    const unsigned int seed) {
33 34 35 36 37 38 39 40 41 42 43 44 45
  VLOG(4) << "[CPU] UniformRandomKernel<T>";
  std::uniform_real_distribution<T> dist(static_cast<T>(min),
                                         static_cast<T>(max));
  auto engine = paddle::framework::GetCPURandomEngine(seed);

  for (int64_t i = 0; i < size; ++i) {
    data[i] = dist(*engine);
  }
}

template <>
inline void UniformRealDistribution(paddle::platform::bfloat16 *data,
                                    const int64_t &size, const float &min,
46
                                    const float &max, const unsigned int seed) {
47 48 49 50 51 52 53 54 55 56
  VLOG(4) << "[CPU] UniformRandomKernel<bfloat16>";
  std::uniform_real_distribution<float> dist(min, max);
  auto engine = paddle::framework::GetCPURandomEngine(seed);

  for (int64_t i = 0; i < size; ++i) {
    data[i] = static_cast<paddle::platform::bfloat16>(dist(*engine));
  }
}
}  // namespace

Q
qijun 已提交
57 58 59 60
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
61
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
62
 public:
C
chengduo 已提交
63 64
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
Y
Yancey1989 已提交
65
    auto out_var = ctx.OutputVar("Out");
66 67 68 69 70 71
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
72
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
73
      } else if (list_new_shape_tensor.size() > 0) {
74
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
75 76 77
      }
    }

78 79
    if (out_var->IsType<phi::SelectedRows>()) {
      auto *selected_rows = out_var->GetMutable<phi::SelectedRows>();
80
      tensor = selected_rows->mutable_value();
81 82
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
83
      tensor->Resize(phi::make_ddim(shape));
84
      selected_rows->mutable_rows()->reserve(shape[0]);
85 86
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
87
      if (!new_shape.empty()) tensor->Resize(phi::make_ddim(new_shape));
Y
Yancey1989 已提交
88
    } else {
89 90 91 92 93
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected type of Output(out) in uniform_random_op must be Tensor, "
          "SelectedRows. But got "
          "unsupport type: %s.",
          framework::ToTypeName(out_var->Type())));
Y
Yancey1989 已提交
94
    }
C
chengduo 已提交
95
    T *data = tensor->mutable_data<T>(ctx.GetPlace());
Y
yaoxuefeng 已提交
96
    int64_t size = tensor->numel();
L
Leo Chen 已提交
97

98 99 100
    UniformRealDistribution<T>(
        data, size, ctx.Attr<float>("min"), ctx.Attr<float>("max"),
        static_cast<unsigned int>(ctx.Attr<int>("seed")));
Y
yaoxuefeng 已提交
101

102 103 104 105 106 107
    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
108 109 110 111 112 113 114
      PADDLE_ENFORCE_GT(
          size, (diag_num - 1) * (diag_step + 1),
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
              diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
115 116 117 118 119
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data[pos] = diag_val;
      }
    }
Q
qijun 已提交
120 121 122
  }
};

Y
Yu Yang 已提交
123
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
124 125 126
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

127
 protected:
128
  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
129
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
130
    return framework::OpKernelType(
131
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
132
        ctx.GetPlace());
Y
Yu Yang 已提交
133
  }
134 135 136 137 138 139 140 141 142 143

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensorList" || var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yu Yang 已提交
144 145
};

Y
Yu Yang 已提交
146
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
147
 public:
Y
Yu Yang 已提交
148
  void Make() override {
149
    AddInput("ShapeTensor",
150 151
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "uniform_random "
152
             "according to "
153
             "this given shape. It means that it has a higher priority than "
154
             "the shape attribute, while the shape attribute still should be "
T
tianshuo78520a 已提交
155
             "set correctly to guarantee shape inference in compile time.")
156 157
        .AsDispensable();
    AddInput("ShapeTensorList",
158 159 160 161
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, uniform_random use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
162 163
        .AsDuplicable()
        .AsDispensable();
Y
yuyang18 已提交
164
    AddOutput("Out", "The output tensor of uniform random op");
165
    AddComment(R"DOC(
166
This operator initializes a tensor with random values sampled from a
167
uniform distribution. The random result is in set [min, max).
168

Y
Yu Yang 已提交
169
)DOC");
170 171
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor")
        .SetDefault({});
Y
yuyang18 已提交
172
    AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
173
        .SetDefault(-1.0f);
Y
yuyang18 已提交
174
    AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
175
        .SetDefault(1.0f);
Q
qijun 已提交
176
    AddAttr<int>("seed",
177
                 "Random seed used for generating samples. "
178 179
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
Y
yuyang18 已提交
180
                 "generate the same random numbers every time. [default 0].")
Q
qijun 已提交
181
        .SetDefault(0);
182 183 184 185 186 187 188 189
    AddAttr<int>("diag_num",
                 "The number of diag elements. Note that if "
                 "diag_num is 0, it means without diag init.[default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
        .SetDefault(0);
    AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
        .SetDefault(1.0f);
Y
yuyang18 已提交
190
    AddAttr<int>("dtype", "Output tensor data type. [default 5(FP32)].")
191
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
192 193
  }
};
Y
Yancey1989 已提交
194 195 196

class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
197
  void operator()(framework::InferVarTypeContext *ctx) const override {
C
chengduo 已提交
198
    auto var_data_type = static_cast<framework::proto::VarType::Type>(
199
        BOOST_GET_CONST(int, ctx->GetAttr("dtype")));
C
chengduo 已提交
200

201 202
    if (ctx->GetOutputType("Out") != framework::proto::VarType::SELECTED_ROWS) {
      ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR);
Y
Yancey1989 已提交
203
    }
204
    ctx->SetOutputDataType("Out", var_data_type);
Y
Yancey1989 已提交
205 206 207
  }
};

Y
Yu Yang 已提交
208 209 210
}  // namespace operators
}  // namespace paddle

211 212 213
DECLARE_INFER_SHAPE_FUNCTOR(uniform_random, UniformRandomInferShapeFunctor,
                            PD_INFER_META(phi::UniformRandomInferMeta));

H
hong 已提交
214 215 216 217 218
REGISTER_OPERATOR(
    uniform_random, paddle::operators::UniformRandomOp,
    paddle::operators::UniformRandomOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
219 220
    paddle::operators::UniformRandomOpVarTypeInference,
    UniformRandomInferShapeFunctor);
Y
Yancey1989 已提交
221

222 223 224 225 226
REGISTER_OP_CPU_KERNEL(
    uniform_random_batch_size_like,
    paddle::operators::CPUUniformRandomKernel<float>,
    paddle::operators::CPUUniformRandomKernel<double>,
    paddle::operators::CPUUniformRandomKernel<paddle::platform::bfloat16>);