paddle_analysis_config.h 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33 34
#include <vector>

35 36
/*! \file */

37 38 39 40
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
41 42 43
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
44 45 46 47

namespace paddle {

class AnalysisPredictor;
48
struct MkldnnQuantizerConfig;
49

50 51 52 53 54 55 56 57 58 59 60 61 62
///
/// \brief configuration manager for `AnalysisPredictor`.
/// \since 1.7.0
///
/// `AnalysisConfig` manages configurations of `AnalysisPredictor`.
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
/// `AnalysisConfig`,
/// and loading it into `AnalysisPredictor`.
///
63 64
struct AnalysisConfig {
  AnalysisConfig() = default;
65 66 67 68 69 70
  ///
  /// \brief Construct a new `AnalysisConfig` from another
  /// `AnalysisConfig`.
  ///
  /// \param[in] other another `AnalysisConfig`
  ///
71
  explicit AnalysisConfig(const AnalysisConfig& other);
72 73 74 75 76
  ///
  /// \brief Construct a new `AnalysisConfig` from a no-combined model.
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
77
  explicit AnalysisConfig(const std::string& model_dir);
78 79 80 81 82 83
  ///
  /// \brief Construct a new `AnalysisConfig` from a combined model.
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
84 85
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
86 87 88
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
89
  enum class Precision {
90 91 92
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
93
  };
94

95 96 97 98 99
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
100
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
101 102 103 104 105 106 107 108

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
109 110
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
111 112 113 114 115
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
116
  void SetProgFile(const std::string& x) { prog_file_ = x; }
117 118 119 120 121
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
122
  void SetParamsFile(const std::string& x) { params_file_ = x; }
123 124 125 126 127 128

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
129 130 131
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
132 133
  /** Get the model directory path.
   */
134
  const std::string& model_dir() const { return model_dir_; }
135 136
  /** Get the program file path.
   */
137
  const std::string& prog_file() const { return prog_file_; }
138 139
  /** Get the composed parameters file.
   */
140 141
  const std::string& params_file() const { return params_file_; }

142 143 144 145 146 147 148 149
  // Padding related.
  /** Turn off Padding.
 */
  void DisableFCPadding();
  /** A bool state telling whether padding is turned on.
   */
  bool use_fc_padding() const { return use_fc_padding_; }

150
  // GPU related.
151 152 153 154 155 156

  /**
   * \brief Turn on GPU.
   * @param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
   * @param device_id the GPU card to use (default is 0).
   */
157
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
158 159
  /** Turn off the GPU.
   */
160
  void DisableGpu();
161 162
  /** A bool state telling whether the GPU is turned on.
   */
163
  bool use_gpu() const { return use_gpu_; }
164 165
  /** Get the GPU device id.
   */
166
  int gpu_device_id() const { return device_id_; }
167 168
  /** Get the initial size in MB of the GPU memory pool.
   */
169
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
170 171
  /** Get the proportion of the initial memory pool size compared to the device.
   */
172
  float fraction_of_gpu_memory_for_pool() const;
173

174 175 176 177 178 179 180
  /** Turn on CUDNN
   */
  void EnableCUDNN();
  /** A boolean state telling whether to use cuDNN.
   */
  bool cudnn_enabled() const { return use_cudnn_; }

181 182 183 184
  /** \brief Control whether to perform IR graph optimization.
   *
   * If turned off, the AnalysisConfig will act just like a NativeConfig.
   */
185
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
186 187
  /** A boolean state tell whether the ir graph optimization is actived.
   */
188
  bool ir_optim() const { return enable_ir_optim_; }
189

190 191 192 193
  /** \brief INTERNAL Determine whether to use the feed and fetch operators.
   * Just for internal development, not stable yet.
   * When ZeroCopyTensor is used, this should turned off.
   */
194
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
195 196
  /** A boolean state telling whether to use the feed and fetch operators.
   */
197
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
198

199 200 201 202 203 204
  /** \brief Control whether to specify the inputs' names.
   *
   * The PaddleTensor type has a `name` member, assign it with the corresponding
   * variable name. This is used only when the input PaddleTensors passed to the
   * `PaddlePredictor.Run(...)` cannot follow the order in the training phase.
   */
205
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
206 207 208 209

  /** A boolean state tell whether the input PaddleTensor names specified should
   * be used to reorder the inputs in `PaddlePredictor.Run(...)`.
   */
210
  bool specify_input_name() const { return specify_input_name_; }
211

212 213 214 215 216 217 218 219 220 221 222 223 224
  /**
   * \brief Turn on the TensorRT engine.
   *
   * The TensorRT engine will accelerate some subgraphes in the original Fluid
   * computation graph. In some models such as TensorRT50, GoogleNet and so on,
   * it gains significant performance acceleration.
   *
   * @param workspace_size the memory size(in byte) used for TensorRT workspace.
   * @param max_batch_size the maximum batch size of this prediction task,
   * better set as small as possible, or performance loss.
   * @param min_subgrpah_size the minimum TensorRT subgraph size needed, if a
   * subgraph is less than this, it will not transfer to TensorRT engine.
   */
225 226 227 228 229 230 231
  void EnableTensorRtEngine(
      int workspace_size = 1 << 20, int max_batch_size = 1,
      int min_subgraph_size = 3, Precision precision = Precision::kFloat32,
      bool use_static = false, bool use_calib_mode = true,
      std::map<std::string, std::vector<int>> min_input_shape = {},
      std::map<std::string, std::vector<int>> max_input_shape = {},
      std::map<std::string, std::vector<int>> optim_input_shape = {});
232 233
  /** A boolean state telling whether the TensorRT engine is used.
   */
234
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
235
  /**
236
   *  \brief Turn on the usage of Lite sub-graph engine.
237
   */
石晓伟 已提交
238 239 240 241 242 243 244 245 246
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

  /** A boolean state indicating whether the Lite sub-graph engine is used.
  */
  bool lite_engine_enabled() const { return use_lite_; }

Y
Yan Chunwei 已提交
247 248 249 250
  /** \brief Control whether to debug IR graph analysis phase.
   *
   * This will generate DOT files for visualizing the computation graph after
   * each analysis pass applied.
251
   */
Y
Yan Chunwei 已提交
252
  void SwitchIrDebug(int x = true);
253

M
mozga-intel 已提交
254 255 256 257 258 259 260
  /** Turn on NGRAPH.
   */
  void EnableNgraph();
  /** A boolean state telling whether to use the NGRAPH.
   */
  bool ngraph_enabled() const { return use_ngraph_; }

261 262
  /** Turn on MKLDNN.
   */
L
luotao1 已提交
263
  void EnableMKLDNN();
264 265 266 267
  /** set the cache capacity of different input shapes for MKLDNN.
   *  Default 0 means don't cache any shape.
   */
  void SetMkldnnCacheCapacity(int capacity);
268 269
  /** A boolean state telling whether to use the MKLDNN.
   */
270 271
  bool mkldnn_enabled() const { return use_mkldnn_; }

272 273
  /** Set and get the number of cpu math library threads.
   */
274
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
275 276
  /** An int state telling how many threads are used in the CPU math library.
   */
277 278 279 280
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

281 282
  /** Transform the AnalysisConfig to NativeConfig.
   */
Y
Yan Chunwei 已提交
283
  NativeConfig ToNativeConfig() const;
284 285 286
  /** Specify the operator type list to use MKLDNN acceleration.
   * @param op_list the operator type list.
   */
287 288 289
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
290

291 292 293 294 295 296 297 298
  /** Turn on quantization.
   */
  void EnableMkldnnQuantizer();

  /** A boolean state telling whether the quantization is enabled.
  */
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

299
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
300

301 302 303 304 305 306
  /** Specify the memory buffer of program and parameter
   * @param prog_buffer the memory buffer of program.
   * @param prog_buffer_size the size of the data.
   * @param params_buffer the memory buffer of the composed parameters file.
   * @param params_buffer_size the size of the commposed parameters data.
   */
T
Tao Luo 已提交
307
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
308 309 310
                      const char* params_buffer, size_t params_buffer_size);
  /** A boolean state telling whether the model is set from the CPU memory.
   */
T
Tao Luo 已提交
311
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
312

Y
Yan Chunwei 已提交
313 314 315
  /** Turn on memory optimize
   * NOTE still in development, will release latter.
   */
316
  void EnableMemoryOptim();
Y
Yan Chunwei 已提交
317 318
  /** Tell whether the memory optimization is activated. */
  bool enable_memory_optim() const;
319 320 321 322 323 324 325 326 327 328

  /** \brief Turn on profiling report.
   *
   * If not turned on, no profiling report will be generateed.
   */
  void EnableProfile();
  /** A boolean state telling whether the profiler is activated.
   */
  bool profile_enabled() const { return with_profile_; }

329 330 331 332 333 334 335 336 337
  /** \brief Disable GLOG information output for security.
   *
   * If called, no LOG(INFO) logs will be generated.
   */
  void DisableGlogInfo();
  /** A boolean state telling whether the GLOG info is disabled.
   */
  bool glog_info_disabled() const { return !with_glog_info_; }

338 339
  void SetInValid() const { is_valid_ = false; }
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
340

341 342
  friend class ::paddle::AnalysisPredictor;

343 344 345
  /** NOTE just for developer, not an official API, easily to be broken.
   * Get a pass builder for customize the passes in IR analysis phase.
   */
346
  PassStrategy* pass_builder() const;
347
  void PartiallyRelease();
348 349 350 351 352 353 354

 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

355
 protected:
356 357
  // Model pathes.
  std::string model_dir_;
358 359
  mutable std::string prog_file_;
  mutable std::string params_file_;
360

S
Sylwester Fraczek 已提交
361
  // GPU related.
362 363 364 365
  bool use_gpu_{false};
  int device_id_{0};
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.

366 367
  bool use_cudnn_{false};

368 369 370
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
371
  // TensorRT related.
372
  bool use_tensorrt_{false};
373 374
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
375
  int tensorrt_workspace_size_;
376 377 378 379
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
380
  int tensorrt_max_batchsize_;
381 382 383 384 385
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
N
nhzlx 已提交
386
  Precision tensorrt_precision_mode_;
N
nhzlx 已提交
387
  bool trt_use_static_engine_;
388
  bool trt_use_calib_mode_;
389

Y
Yan Chunwei 已提交
390 391 392
  // memory reuse related.
  bool enable_memory_optim_{false};

M
mozga-intel 已提交
393
  bool use_ngraph_{false};
394 395 396
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
397
  bool model_from_memory_{false};
398

399 400 401 402 403 404 405 406
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

407 408
  bool with_profile_{false};

409 410
  bool with_glog_info_{true};

411 412 413 414
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
415 416 417
  std::map<std::string, std::vector<int>> min_input_shape_;
  std::map<std::string, std::vector<int>> max_input_shape_;
  std::map<std::string, std::vector<int>> optim_input_shape_;
418

石晓伟 已提交
419 420 421 422 423
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;

424 425
  // mkldnn related.
  int mkldnn_cache_capacity_{0};
426 427
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
428

429 430 431 432
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
433 434
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
435 436 437
};

}  // namespace paddle