mlir_to_runtime_translate.cc 22.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"

#include <llvm/Support/SourceMgr.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
19 20
#include <mlir/IR/BuiltinOps.h>
#include <mlir/IR/BuiltinTypes.h>
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#include <mlir/IR/Diagnostics.h>
#include <mlir/IR/OperationSupport.h>
#include <mlir/Parser.h>

#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "boost/optional.hpp"
#include "paddle/infrt/common/string.h"
34
#include "paddle/infrt/dialect/dense_tensor.h"
Y
Yan Chunwei 已提交
35 36 37 38 39 40 41 42 43 44
#include "paddle/infrt/dialect/mlir_loader.h"
#include "paddle/infrt/dialect/tensor_shape.h"
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_frame.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/op_executable.h"
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/tensor/tensor_shape.h"

45 46
namespace infrt {
namespace host_context {
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};
  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

bool MlirToRuntimeTranslator::EmitConstantOp(mlir::Operation* op) {
78
  if (!infrt::Startswith(op->getName().getStringRef().str(), "infrt.constant"))
Y
Yan Chunwei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    return false;
  VLOG(3) << "Emitting constant op [" << op->getName().getStringRef().str()
          << "]";

  auto attr = op->getAttr("value");
  if (attr.isa<mlir::FloatAttr>()) {
    if (attr.getType().isF32()) {
      impl_->op_results[op] = {ValueRef(
          static_cast<float>(attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else if (attr.getType().isF64()) {
      impl_->op_results[op] = {ValueRef(static_cast<double>(
          attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  if (attr.isa<mlir::IntegerAttr>()) {
    if (attr.getType().isInteger(32)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int32_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(64)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int64_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(1)) {
      impl_->op_results[op] = {
          ValueRef(static_cast<bool>(attr.cast<mlir::IntegerAttr>().getInt()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  LOG(FATAL) << "Not supported constant attribute type";
  return true;
}

template <>
boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
119 120 121 122
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129 130
    if (val.getType().isInteger(32)) {
      return val.getInt();
    }
  }
  return boost::none;
}
template <>
boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
131 132 133 134
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
135 136 137 138 139 140 141 142 143 144
    if (val.getType().isInteger(64)) {
      return val.getInt();
    }
  }
  return boost::none;
}

// TODO(Superjomn) Make double and float parsing share some thing.
template <>
boost::optional<float> MlirToRuntimeTranslator::EmitAttribute(
145 146 147 148
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
149 150 151 152 153
    if (val.getType().isF32()) return val.getValueAsDouble();
  }
  return boost::none;
}

154 155 156 157 158 159 160 161 162 163 164
template <>
boost::optional<bool> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::BoolAttr>()) return boost::none;
  if (attr.isa<mlir::BoolAttr>()) {
    auto val = attr.cast<mlir::BoolAttr>();
    return val.getValue();
  }
  return boost::none;
}

Y
Yan Chunwei 已提交
165 166
template <>
boost::optional<double> MlirToRuntimeTranslator::EmitAttribute(
167 168 169 170
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
171 172 173 174 175
    if (val.getType().isF64()) return val.getValueAsDouble();
  }
  return boost::none;
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
template <>
boost::optional<::infrt::TargetType> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<::infrt::TargetAttr>()) return boost::none;
  if (attr.isa<::infrt::TargetAttr>()) {
    return attr.cast<::infrt::TargetAttr>().getTarget();
  }
  return boost::none;
}

template <>
boost::optional<::infrt::LayoutType> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<::infrt::LayoutAttr>()) return boost::none;
  if (attr.isa<::infrt::LayoutAttr>()) {
    return attr.cast<::infrt::LayoutAttr>().getLayout();
  }
  return boost::none;
}

template <>
boost::optional<::infrt::PrecisionType> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<::infrt::PrecisionAttr>()) return boost::none;
  if (attr.isa<::infrt::PrecisionAttr>()) {
    return attr.cast<::infrt::PrecisionAttr>().getPrecision();
  }
  return boost::none;
}

Y
Yan Chunwei 已提交
206 207
template <>
boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
208 209 210
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::StringAttr>()) return boost::none;
  return attr.cast<mlir::StringAttr>().getValue().str();
Y
Yan Chunwei 已提交
211 212 213 214 215
}

#define PROCESS_ARRAY_INT(type__, bits__)                                      \
  template <>                                                                  \
  boost::optional<std::vector<type__>> MlirToRuntimeTranslator::EmitAttribute( \
216 217 218
      const mlir::Attribute& attr) {                                           \
    if (!attr.isa<mlir::ArrayAttr>()) return boost::none;                      \
    auto array = attr.cast<mlir::ArrayAttr>();                                 \
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231
    CHECK(!array.empty());                                                     \
                                                                               \
    if (!array[0].getType().isInteger(bits__)) {                               \
      return boost::none;                                                      \
    }                                                                          \
                                                                               \
    std::vector<type__> res;                                                   \
    for (auto& v : array) {                                                    \
      res.push_back(v.cast<mlir::IntegerAttr>().getInt());                     \
    }                                                                          \
    return res;                                                                \
  }

232
PROCESS_ARRAY_INT(bool, 1);
Y
Yan Chunwei 已提交
233 234 235 236 237 238
PROCESS_ARRAY_INT(int16_t, 16);
PROCESS_ARRAY_INT(int32_t, 32);
PROCESS_ARRAY_INT(int64_t, 64);

template <>
boost::optional<std::vector<float>> MlirToRuntimeTranslator::EmitAttribute(
239 240 241
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254
  CHECK(!array.empty());

  if (!array[0].getType().isF32()) return boost::none;

  std::vector<float> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

template <>
boost::optional<std::vector<double>> MlirToRuntimeTranslator::EmitAttribute(
255 256 257
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
258 259 260 261 262 263 264 265 266 267 268 269
  CHECK(!array.empty());

  if (!array[0].getType().isF64()) return boost::none;

  std::vector<double> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

static bool IsReturn(mlir::Operation* op) {
270
  return op->getName().getStringRef() == "infrt.return";
Y
Yan Chunwei 已提交
271 272
}

273 274
bool MlirToRuntimeTranslator::EmitGeneralOp(
    mlir::Operation* op, const KernelRegistry& kernel_registry) {
Y
Yan Chunwei 已提交
275 276 277 278 279 280 281 282 283 284
  CHECK(impl_->runtime);
  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  VLOG(3) << "processing general op : " << op->getName().getStringRef().str();

  // process operands
  for (int i = 0, e = op->getNumOperands(); i < e; i++) {
    // function argument as value
    auto operand = op->getOperand(i);
285 286
    /// if (operand.getKind() == mlir::Value::Kind::BlockArgument) {
    if (operand.isa<mlir::BlockArgument>()) {
Y
Yan Chunwei 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      mlir::BlockArgument arg = operand.dyn_cast<mlir::BlockArgument>();
      Value* arg_value = GetValue(arg);
      impl_->cur_op->AppendArgument(arg_value);
      VLOG(3) << "* op mlir operand: " << DumpToString(arg) << " "
              << GetValue(arg);
      continue;
    }

    // normal value
    Value* arg_value = GetValue(operand);
    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);

    VLOG(3) << "* op mlir operand: " << DumpToString(operand) << " "
            << GetValue(operand) << " vs " << arg_value;
  }

  // process attributes
  auto attrs = op->getAttrs();

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  // MLIR's underlying attr storage type is `Builtin_Dictionary`, and its
  // elements
  // are sorted by name. The following code adapts the order of function
  // signatures
  // of the phi operator library.
  llvm::SmallVector<Value*, 4> tmp;
  tmp.resize(attrs.size());
  const std::string& kernel_name = op->getName().getStringRef().str();
  const auto& attr_names = kernel_registry.GetAttrNameList(kernel_name);
  if (attrs.size() && attr_names.empty()) {
    LOG(WARNING) << "The kernel `" << kernel_name
                 << "` has no specified attr order.";
  }
  auto get_offset = [](const char* attr,
                       const std::vector<const char*>& names,
                       const std::string& kernel_name) -> int {
    for (size_t i = 0; i < names.size(); ++i) {
      if (!std::strcmp(attr, names[i])) {
        return i;
      }
    }
    LOG(WARNING) << "The attribute `" << attr << "` of kernel `" << kernel_name
                 << "` is not properly registered with "
                    "`KernelRegistry::AddKernelWithAttrs()`.";
    return -1;
  };

Y
Yan Chunwei 已提交
339 340
  for (size_t i = 0; i < attrs.size(); i++) {
    auto& attr = attrs[i];
341 342 343 344 345 346 347
    int offset{};
    if (attr_names.size()) {
      offset = get_offset(attr.getName().data(), attr_names, kernel_name);
    } else {
      offset = i;
    }
    CHECK_NE(offset, -1);
348
    if (auto v = EmitAttribute<int32_t>(attr.getValue())) {
349
      tmp[offset] = new Value(*v);
350
    } else if (auto v = EmitAttribute<int64_t>(attr.getValue())) {
351
      tmp[offset] = new Value(*v);
352
    } else if (auto v = EmitAttribute<float>(attr.getValue())) {
353
      tmp[offset] = new Value(*v);
354
    } else if (auto v = EmitAttribute<double>(attr.getValue())) {
355
      tmp[offset] = new Value(*v);
356
    } else if (auto v = EmitAttribute<std::string>(attr.getValue())) {
357
      tmp[offset] = new Value(std::move(*v));
358
    } else if (auto v = EmitAttribute<bool>(attr.getValue())) {
359
      tmp[offset] = new Value(*v);
360
    } else if (auto v = EmitAttribute<::infrt::TargetType>(attr.getValue())) {
361
      tmp[offset] = new Value(*v);
362 363
    } else if (auto v =
                   EmitAttribute<::infrt::PrecisionType>(attr.getValue())) {
364
      tmp[offset] = new Value(*v);
365
    } else if (auto v = EmitAttribute<::infrt::LayoutType>(attr.getValue())) {
366
      tmp[offset] = new Value(*v);
367
    } else if (auto v = EmitAttribute<std::vector<int16_t>>(attr.getValue())) {
368
      tmp[offset] = new Value(std::move(*v));
369
    } else if (auto v = EmitAttribute<std::vector<int32_t>>(attr.getValue())) {
370
      tmp[offset] = new Value(std::move(*v));
371
    } else if (auto v = EmitAttribute<std::vector<int64_t>>(attr.getValue())) {
372
      tmp[offset] = new Value(std::move(*v));
373
    } else if (auto v = EmitAttribute<std::vector<float>>(attr.getValue())) {
374
      tmp[offset] = new Value(std::move(*v));
375
    } else if (auto v = EmitAttribute<std::vector<double>>(attr.getValue())) {
376
      tmp[offset] = new Value(std::move(*v));
Y
Yan Chunwei 已提交
377 378 379 380 381
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
  }

382 383 384 385
  for (size_t i = 0; i < tmp.size(); i++) {
    impl_->cur_op->AppendAttribute(tmp[i]);
  }

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    if (res.getType().isa<::infrt::DenseTensorType>()) {
      auto r = impl_->value_map.try_emplace(
          res, ValueRef(new Value{::phi::DenseTensor()}));
      CHECK(r.second) << "Duplicate add mlir value [" << DumpToString(res)
                      << "]";
      res_values.push_back(r.first->second.get());
    } else {
      res_values.push_back(AddValue(res));
    }

    VLOG(3) << "* op mlir res: " << DumpToString(res) << " " << GetValue(res);
  }
  impl_->cur_op->SetResults(res_values);

#ifdef INFRT_DEBUG
  {
    VLOG(3) << "check result";
    for (int i = 0; i < impl_->cur_op->frame().GetNumResults(); i++) {
      VLOG(3) << "+ res value: " << impl_->cur_op->frame().GetResults()[i];
    }
  }
#endif

Y
Yan Chunwei 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  // process regions, we treat regions as attribute.
  auto num_regions = op->getNumRegions();
  if (num_regions > 0) {
    CHECK_EQ(num_regions, 1UL)
        << "op with more than one region is not supported yet.";
    auto& region = op->getRegions().front();
    auto num_blocks = region.getBlocks().size();
    CHECK_EQ(num_blocks, 1UL)
        << "region with more than one block is not supported yet.";

    // process arguments
    llvm::SmallVector<mlir::Type, 4> inputs;
    auto& block = region.getBlocks().front();
    for (auto arg : block.getArguments()) inputs.push_back(arg.getType());

    // process results
    // NOTE: if an op contains a region, we simply ignore the region's return
    // values,
    //       or its return values will conflict with op's return values.
    llvm::SmallVector<mlir::Type, 0> results;

    auto func_type =
435
        mlir::FunctionType::get(region.getContext(), inputs, results);
Y
Yan Chunwei 已提交
436 437 438 439 440 441 442 443 444 445 446
    auto* function = impl_->cur_op->CreateFunctionExecutable(
        &region, func_type, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

  return true;
}

bool MlirToRuntimeTranslator::EmitReturnOp(
    mlir::Operation* op, llvm::SmallVectorImpl<mlir::Value>* results) {
  CHECK(results);
447
  if (op->getName().getStringRef() == "infrt.return") {
Y
Yan Chunwei 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    for (size_t i = 0; i < op->getNumOperands(); i++) {
      results->push_back(op->getOperand(i));
    }

    return true;
  }
  return false;
}

bool MlirToRuntimeTranslator::EmitFunctions() {
  for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
    EmitFunction(func_op);
  }
  return true;
}

void MlirToRuntimeTranslator::EmitFunction(mlir::FuncOp op) {
  impl_->func_defs[op.getName().str()] = op;
}

Value* MlirToRuntimeTranslator::GetOpResult(mlir::Operation* op) {
  auto it = impl_->op_results.find(op);
  return it == impl_->op_results.end() ? nullptr : it->second.front().get();
}

Value* MlirToRuntimeTranslator::GetValue(mlir::Value value) {
  auto it = impl_->value_map.find(value);
  return it == impl_->value_map.end() ? nullptr : it->second.get();
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value value) {
  auto res = impl_->value_map.try_emplace(value, ValueRef(new Value));
  CHECK(res.second) << "Duplicate add mlir value [" << DumpToString(value)
                    << "]";
  return res.first->second.get();
}

MlirToRuntimeTranslator::~MlirToRuntimeTranslator() {}

void MlirToRuntimeTranslator::UpdateCurFuncName(const std::string& name) {
  impl_->cur_func_name = std::string(name);
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(mlir::ModuleOp module,
                                                 CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->module = module;
  impl_->runtime = runtime;
}

bool MlirToRuntimeTranslator::EmitBuildShapeOp(mlir::Operation* op) {
  if (op->getName().getStringRef() != "ts.build_shape") return false;

  auto value = op->getAttr("value");

  CHECK(value.isa<mlir::ArrayAttr>());
  auto values = value.cast<mlir::ArrayAttr>().getValue();
  std::vector<int64_t> dims;
  for (auto& attr_v : values) {
    dims.push_back(attr_v.cast<mlir::IntegerAttr>().getInt());
  }
  impl_->op_results[op] = {
      ValueRef(new Value(tensor::TensorShape(llvm::ArrayRef<int64_t>(dims))))};

  return true;
}

bool MlirToRuntimeTranslator::EmitCallOp(mlir::Operation* op,
                                         function_defs_t* function_table) {
  CHECK(op);
  CHECK(function_table);
520
  if (op->getName().getStringRef() != "infrt.call") return false;
Y
Yan Chunwei 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  auto callee = op->getAttr("callee");
  auto callee_name = callee.dyn_cast<mlir::FlatSymbolRefAttr>();

  // process arguments
  for (size_t i = 0; i < op->getNumOperands(); i++) {
    auto operand = op->getOperand(i);
    auto* arg_value = GetValue(operand);

    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);
  }

  // process attribute
  auto& table = function_table ? *function_table : impl_->func_defs;
  {
    // lookup the callee function
    auto it = table.find(callee_name.getValue().str());
    CHECK(it != table.end()) << "can't find function ["
                             << callee_name.getValue().str() << "]";
    auto* function =
        impl_->cur_op->CreateFunctionExecutable(it->second, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

554 555 556 557 558 559 560 561
  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    res_values.push_back(AddValue(res));
  }
  impl_->cur_op->SetResults(res_values);

Y
Yan Chunwei 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
  VLOG(3) << "Emit call " << callee_name.getValue().str() << " "
          << impl_->cur_op->frame();
  return true;
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->runtime = runtime;
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value mlir_value, Value* value) {
  auto it = impl_->value_map.try_emplace(mlir_value, ValueRef(value));
  CHECK(it.second) << "duplicate add value " << DumpToString(mlir_value);
  return value;
}

void MlirToRuntimeTranslate(mlir::ModuleOp module,
                            CoreRuntimeBuilder* runtime) {
  MlirToRuntimeTranslator(module, runtime).Run();
}

/**
 * Execute the mlir program in test mode -- print some debug information to
 * stdout.
 */
class MlirProgramTestExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  MlirProgramTestExecutor(mlir::ModuleOp module, KernelRegistry* registry)
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry(registry) {
    CHECK(registry);
  }

  void Run() {
    EmitFunctions();

    CHECK(registry);
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
      VLOG(3) << "Running function " << func_op.getName().str();
      EmitAndRunFuncWithoutArguments(func_op);
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  void EmitAndRunFuncWithoutArguments(mlir::FuncOp func) {
    // print the function name for llvm FileChecker macro, CHECK-LABEL
    std::cout << '@' << func.getName().str() << std::endl;
    if (func.getNumArguments() ==
        0) {  // an entry function, execute it immediately
      VLOG(3) << "executing function " << func.getName().str();
      // Emit and execute each function
      CoreRuntimeBuilder runtime(registry);
      impl_->runtime = &runtime;

      auto& blocks = func.getBlocks();
      CHECK_EQ(blocks.size(), 1UL)
          << "function with more than one block is not supported yet";

      for (auto& op : blocks.front()) {
        if (EmitConstantOp(&op)) continue;
        if (EmitBuildShapeOp(&op)) continue;
        llvm::SmallVector<mlir::Value, 3> results;
        if (EmitReturnOp(&op, &results)) continue;
        if (EmitCallOp(&op, &impl_->func_defs)) continue;
640
        if (EmitGeneralOp(&op, *registry)) continue;
Y
Yan Chunwei 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        LOG(FATAL) << "Not supported op: " << DumpToString(op);
      }

      runtime.Execute();

    } else {
      VLOG(2) << "get an callable function: " << func.getName().str();
    }
  }

 private:
  KernelRegistry* registry{};
};

void TestMlir(mlir::ModuleOp module, KernelRegistry* registry) {
  MlirProgramTestExecutor execute(module, registry);
  execute.Run();
}

660 661
}  // namespace host_context
}  // namespace infrt