full_pascalvoc_test_preprocess.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import xml.etree.ElementTree as ET
from PIL import Image
import numpy as np
import os
import sys
from paddle.dataset.common import download
import tarfile
import StringIO
import hashlib
import tarfile

DATA_URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar"
DATA_DIR = os.path.expanduser("~/.cache/paddle/dataset/pascalvoc/")
TAR_FILE = "VOCtest_06-Nov-2007.tar"
TAR_PATH = os.path.join(DATA_DIR, TAR_FILE)
RESIZE_H = 300
RESIZE_W = 300
mean_value = [127.5, 127.5, 127.5]
ap_version = '11point'
DATA_OUT = 'pascalvoc_full.bin'
DATA_OUT_PATH = os.path.join(DATA_DIR, DATA_OUT)
BIN_TARGETHASH = "f6546cadc42f5ff13178b84ed29b740b"
TAR_TARGETHASH = "b6e924de25625d8de591ea690078ad9f"
TEST_LIST_KEY = "VOCdevkit/VOC2007/ImageSets/Main/test.txt"
BIN_FULLSIZE = 5348678856


def preprocess(img):
    img_width, img_height = img.size

    img = img.resize((RESIZE_W, RESIZE_H), Image.ANTIALIAS)
    img = np.array(img)

    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
    img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype('float32')
    img -= img_mean
    img = img * 0.007843
    return img


def print_processbar(done_percentage):
    done_filled = done_percentage * '='
    empty_filled = (100 - done_percentage) * ' '
    sys.stdout.write("\r[%s%s]%d%%" %
                     (done_filled, empty_filled, done_percentage))
    sys.stdout.flush()


def convert_pascalvoc(tar_path, data_out_path):
    print("Start converting ...\n")
    images = {}
    gt_labels = {}
    boxes = []
    lbls = []
    difficults = []
    object_nums = []

    # map label to number (index)
    label_list = [
        "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
        "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
        "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
        "tvmonitor"
    ]
    print_processbar(0)
    #read from tar file and write to bin
    tar = tarfile.open(tar_path, "r")
    f_test = tar.extractfile(TEST_LIST_KEY).read()
    lines = f_test.split('\n')
    del lines[-1]
    line_len = len(lines)
    per_percentage = line_len / 100

    f1 = open(data_out_path, "w+b")
    f1.seek(0)
    f1.write(np.array(line_len).astype('int64').tobytes())
    for tarInfo in tar:
        if tarInfo.isfile():
            tmp_filename = tarInfo.name
            name_arr = tmp_filename.split('/')
            name_prefix = name_arr[-1].split('.')[0]
            if name_arr[-2] == 'JPEGImages' and name_prefix in lines:
                images[name_prefix] = tar.extractfile(tarInfo).read()
            if name_arr[-2] == 'Annotations' and name_prefix in lines:
                gt_labels[name_prefix] = tar.extractfile(tarInfo).read()

    for line_idx, name_prefix in enumerate(lines):
        im = Image.open(StringIO.StringIO(images[name_prefix]))
        if im.mode == 'L':
            im = im.convert('RGB')
        im_width, im_height = im.size

        im = preprocess(im)
        np_im = np.array(im)
        f1.write(np_im.astype('float32').tobytes())

        # layout: label | xmin | ymin | xmax | ymax | difficult
        bbox_labels = []
        root = ET.fromstring(gt_labels[name_prefix])

        objects = root.findall('object')
        objects_size = len(objects)
        object_nums.append(objects_size)

        for object in objects:
            bbox_sample = []
            bbox_sample.append(
                float(label_list.index(object.find('name').text)))
            bbox = object.find('bndbox')
            difficult = float(object.find('difficult').text)
            bbox_sample.append(float(bbox.find('xmin').text) / im_width)
            bbox_sample.append(float(bbox.find('ymin').text) / im_height)
            bbox_sample.append(float(bbox.find('xmax').text) / im_width)
            bbox_sample.append(float(bbox.find('ymax').text) / im_height)
            bbox_sample.append(difficult)
            bbox_labels.append(bbox_sample)

        bbox_labels = np.array(bbox_labels)
        if len(bbox_labels) == 0: continue
        lbls.extend(bbox_labels[:, 0])
        boxes.extend(bbox_labels[:, 1:5])
        difficults.extend(bbox_labels[:, -1])

        if line_idx % per_percentage:
            print_processbar(line_idx / per_percentage)

    f1.write(np.array(object_nums).astype('uint64').tobytes())
    f1.write(np.array(lbls).astype('int64').tobytes())
    f1.write(np.array(boxes).astype('float32').tobytes())
    f1.write(np.array(difficults).astype('int64').tobytes())
    f1.close()
    print_processbar(100)
    print("Conversion finished!\n")


def download_pascalvoc(data_url, data_dir, tar_targethash, tar_path):
    print("Downloading pascalvcoc test set...")
    download(data_url, data_dir, tar_targethash)
    if not os.path.exists(tar_path):
        print("Failed in downloading pascalvoc test set. URL %s\n" % data_url)
    else:
        tmp_hash = hashlib.md5(open(tar_path, 'rb').read()).hexdigest()
        if tmp_hash != tar_targethash:
            print("Downloaded test set is broken, removing ...\n")
        else:
            print("Downloaded successfully. Path: %s\n" % tar_path)


def run_convert():
    try_limit = 2
    retry = 0
    while not (os.path.exists(DATA_OUT_PATH) and
               os.path.getsize(DATA_OUT_PATH) == BIN_FULLSIZE and BIN_TARGETHASH
               == hashlib.md5(open(DATA_OUT_PATH, 'rb').read()).hexdigest()):
        if os.path.exists(DATA_OUT_PATH):
            sys.stderr.write(
                "The existing binary file is broken. It is being removed...\n")
            os.remove(DATA_OUT_PATH)
        if retry < try_limit:
            retry = retry + 1
        else:
            download_pascalvoc(DATA_URL, DATA_DIR, TAR_TARGETHASH, TAR_PATH)
            convert_pascalvoc(TAR_PATH, DATA_OUT_PATH)
    print("Success! \nThe binary file can be found at %s\n" % DATA_OUT_PATH)


if __name__ == "__main__":
    run_convert()