reduce_op.cc 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <NvInfer.h>
#include <sys/types.h>

#include <cstddef>
#include <cstdint>
#include <vector>

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

W
wenbin 已提交
38
class ReduceOpConverter : public OpConverter {
39 40 41
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
W
wenbin 已提交
42
    VLOG(4) << "convert a paddle " << op_type << " op to tensorrt reduce layer";
43
    framework::OpDesc op_desc(op, nullptr);
W
wenbin 已提交
44 45 46 47 48 49
    nvinfer1::ReduceOperation reduce_type;
    if (op_type == "reduce_sum") {
      reduce_type = nvinfer1::ReduceOperation::kSUM;
    } else if (op_type == "reduce_mean") {
      reduce_type = nvinfer1::ReduceOperation::kAVG;
    }
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    auto* x = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims input_shape = x->getDimensions();
    int input_dims = input_shape.nbDims;

    bool keep_dim = BOOST_GET_CONST(bool, op_desc.GetAttr("keep_dim"));
    std::vector<int32_t> dim =
        BOOST_GET_CONST(std::vector<int32_t>, op_desc.GetAttr("dim"));
    bool reduce_all = BOOST_GET_CONST(bool, op_desc.GetAttr("reduce_all"));

    nvinfer1::IReduceLayer* layer = nullptr;
    if (reduce_all) {
      uint32_t reduce_dim = 0;
      for (int i = 0; i < input_dims; ++i) {
        reduce_dim |= 1 << i;
      }
W
wenbin 已提交
66
      layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *x, reduce_type, reduce_dim,
67 68 69 70 71 72 73 74
                                   keep_dim);
    } else {
      auto CvtToBitMask = [&](const std::vector<int32_t>& dims) -> uint32_t {
        uint32_t res = 0;
        for (auto x : dims) {
          if (x < 0) {
            res |= 1 << (x + input_dims);
          } else {
W
wenbin 已提交
75
            if (!engine_->with_dynamic_shape()) x = x - 1;
76 77 78 79 80
            res |= 1 << x;
          }
        }
        return res;
      };
W
wenbin 已提交
81
      layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *x, reduce_type,
82 83 84 85
                                   CvtToBitMask(dim), keep_dim);
    }

    auto output_name = op_desc.Output("Out")[0];
86 87
    // Ensure that the output type and input type are consistent.
    layer->getOutput(0)->setType(layer->getInput(0)->getType());
W
wenbin 已提交
88
    RreplenishLayerAndOutput(layer, op_type, {output_name}, test_mode);
89
  }
W
wenbin 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102

 protected:
  std::string op_type;
};

class ReduceSumOpConverter : public ReduceOpConverter {
 public:
  ReduceSumOpConverter() { op_type = "reduce_sum"; }
};

class ReduceMeanOpConverter : public ReduceOpConverter {
 public:
  ReduceMeanOpConverter() { op_type = "reduce_mean"; }
103 104 105 106 107 108 109
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(reduce_sum, ReduceSumOpConverter);
W
wenbin 已提交
110
REGISTER_TRT_OP_CONVERTER(reduce_mean, ReduceMeanOpConverter);