concat.hip.cu 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hip/hip_runtime.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
__device__ T upper_bound(const T* first, T count, T val) {
  const T* orig = first;
  const T* it = nullptr;
  T step = 0;
  while (count > 0) {
    it = first;
    step = count / 2;
    it += step;
    if (!(val < *it)) {
      first = ++it;
      count -= step + 1;
    } else {
      count = step;
    }
  }
  return first - orig;
}

template <typename T>
__global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
                             const int output_rows, const int output_cols,
                             T* output) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  int segment = upper_bound<int>(input_cols, col_size, tid_x) - 1;

  int curr_offset = input_cols[segment];
  int curr_segment = segment;
  for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
    T curr_col_offset;
    while ((curr_col_offset = input_cols[curr_segment + 1]) <= tid_x) {
      curr_offset = curr_col_offset;
      ++curr_segment;
    }

    int local_col = tid_x - curr_offset;
    int segment_width = curr_col_offset - curr_offset;
    T* input_ptr = inputs[curr_segment];
    int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
    for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y)
      output[tid_y * output_cols + tid_x] =
          input_ptr[tid_y * segment_width + local_col];
  }
}

template <typename T>
__global__ void KernelConcat(T** inputs, const int input_col,
                             const int output_rows, const int output_cols,
                             T* output) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  double inv_input_col = 1.0 / input_col;
  for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
    int split = tid_x * inv_input_col;
    int in_offset = tid_x - split * input_col;
    T* input_ptr = inputs[split];
    int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
    for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y) {
      output[tid_y * output_cols + tid_x] =
          input_ptr[tid_y * input_col + in_offset];
    }
  }
}

template <typename T>
__global__ void KernelConcatGrad(const T* input, const int input_row,
                                 const int input_col, const int* output_cols,
                                 int col_size, T** outputs) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  int segment = upper_bound<int>(output_cols, col_size, tid_x) - 1;
  int curr_offset = output_cols[segment];
  int curr_segment = segment;
  for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
    T curr_col_offset;
    while ((curr_col_offset = output_cols[curr_segment + 1]) <= tid_x) {
      curr_offset = curr_col_offset;
      ++curr_segment;
    }

    int local_col = tid_x - curr_offset;
    int segment_width = curr_col_offset - curr_offset;
    T* output_ptr = outputs[curr_segment];
    int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
    for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
      output_ptr[tid_y * segment_width + local_col] =
          input[tid_y * input_col + tid_x];
  }
}

template <typename T>
__global__ void KernelConcatGrad(const T* input, const int input_row,
                                 const int input_col, const int output_cols,
                                 T** outputs) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  double inv_input_col = 1.0 / input_col;
  for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
    int split = tid_x * inv_input_col;
    int in_offset = tid_x - split * input_col;
    T* output_ptr = outputs[split];
    int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
    for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
      output_ptr[tid_y * output_cols + in_offset] =
          input[tid_y * input_col + tid_x];
  }
}

/*
 * All tensors' dimension should be the same and the values of
 * each dimension are the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const std::vector<framework::Tensor>& input, const int axis,
                  framework::Tensor* output) {
    // TODO(zcd): Add input data validity checking
    int num = input.size();
    int rows = 1;
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
    int cols = input[0].numel() / rows;
    int out_rows = rows, out_cols = 0;

    framework::Vector<int16_t> inputs_data(num * sizeof(T*) / 2);
    framework::Vector<int> inputs_cols(num + 1);
    inputs_cols[0] = 0;
    T** inputs_ptr = reinterpret_cast<T**>(inputs_data.data());

    bool sameShape = true;
    for (int i = 0; i < num; ++i) {
      int t_cols = input[i].numel() / rows;
      if (sameShape) {
        if (t_cols != cols) sameShape = false;
      }
      out_cols += t_cols;
      inputs_cols[i + 1] = out_cols;
      inputs_ptr[i] = const_cast<T*>(input[i].data<T>());
    }

    T** ins_gpu =
        reinterpret_cast<T**>(inputs_data.CUDAMutableData(context.GetPlace()));
    const int* ins_col_gpu = inputs_cols.CUDAData(context.GetPlace());

    // computation
    // set the thread block and grid according to CurrentDeviceId
    const int kThreadsPerBlock = 1024;
    int block_cols = kThreadsPerBlock;
    if (out_cols < kThreadsPerBlock) {  // block_cols is aligned by 32.
      block_cols = ((out_cols + 31) >> 5) << 5;
    }
    int block_rows = kThreadsPerBlock / block_cols;
    dim3 block_size = dim3(block_cols, block_rows, 1);

    int max_threads = context.GetMaxPhysicalThreadCount();
    int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);

    int grid_cols =
        std::min((out_cols + block_cols - 1) / block_cols, max_blocks);
    int grid_rows =
        std::min(max_blocks / grid_cols, std::max(out_rows / block_rows, 1));
    dim3 grid_size = dim3(grid_cols, grid_rows, 1);

    if (sameShape) {
      hipLaunchKernelGGL((KernelConcat<T>), dim3(grid_size), dim3(block_size), 0, context.stream(),
          ins_gpu, cols, out_rows, out_cols, output->data<T>());
    } else {
      hipLaunchKernelGGL((KernelConcat<T>), dim3(grid_size), dim3(block_size), 0, context.stream(),
          ins_gpu, ins_col_gpu, static_cast<int>(inputs_cols.size()), out_rows,
          out_cols, output->data<T>());
    }
  }
};

/*
 * All tensors' dimension should be the same and the values of
 * each dimension are the same, except the axis dimension.
 */
template <typename T>
class ConcatGradFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, const int axis,
                  std::vector<framework::Tensor>& outputs) {
    // TODO(zcd): Add input data validity checking
    int num = outputs.size();
    int input_row = 1;
    auto dim_0 = outputs[0].dims();
    for (int i = 0; i < axis; ++i) {
      input_row *= dim_0[i];
    }

    int output_col_0 = outputs[0].numel() / input_row;
    int input_col = 0;
    bool sameShape = true;

    framework::Vector<int16_t> outputs_data(num * sizeof(T*) / 2);
    framework::Vector<int> outputs_cols(num + 1);
    outputs_cols[0] = 0;
    T** outputs_ptr = reinterpret_cast<T**>(outputs_data.data());

    for (int i = 0; i < num; ++i) {
      int t_col = outputs[i].numel() / input_row;
      if (sameShape) {
        if (t_col != output_col_0) sameShape = false;
      }
      input_col += t_col;
      outputs_cols[i + 1] = input_col;
      outputs_ptr[i] = outputs[i].data<T>();
    }

    T** outs_gpu =
        reinterpret_cast<T**>(outputs_data.CUDAMutableData(context.GetPlace()));
    const int* outs_col_gpu = outputs_cols.CUDAData(context.GetPlace());

    // computation
    const int kThreadsPerBlock = 1024;
    int block_cols = kThreadsPerBlock;
    if (input_col < kThreadsPerBlock) {  // block_cols is aligned by 32.
      block_cols = ((input_col + 31) >> 5) << 5;
    }
    int block_rows = kThreadsPerBlock / block_cols;
    dim3 block_size = dim3(block_cols, block_rows, 1);

    int max_threads = context.GetMaxPhysicalThreadCount();
    int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);

    int grid_cols =
        std::min((input_col + block_cols - 1) / block_cols, max_blocks);
    int grid_rows =
        std::min(max_blocks / grid_cols, std::max(input_row / block_rows, 1));
    dim3 grid_size = dim3(grid_cols, grid_rows, 1);

    if (sameShape) {
      hipLaunchKernelGGL((KernelConcatGrad<T>), dim3(grid_size), dim3(block_size), 0, context.stream(),
          input.data<T>(), input_row, input_col, output_col_0, outs_gpu);
    } else {
      hipLaunchKernelGGL((KernelConcatGrad<T>), dim3(grid_size), dim3(block_size), 0, context.stream(),
          input.data<T>(), input_row, input_col, outs_col_gpu,
          static_cast<int>(outputs_cols.size()), outs_gpu);
    }
  }
};

template class ConcatFunctor<platform::CUDADeviceContext, int>;
template class ConcatFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatFunctor<platform::CUDADeviceContext, float>;
template class ConcatFunctor<platform::CUDADeviceContext, double>;

template class ConcatGradFunctor<platform::CUDADeviceContext, int>;
template class ConcatGradFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CUDADeviceContext, float>;
template class ConcatGradFunctor<platform::CUDADeviceContext, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle