test_norm_all.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid


def p_norm(x, axis, porder, keepdims=False):
myq406450149's avatar
myq406450149 已提交
25 26 27 28
    r = []
    if axis is None:
        x = x.flatten()
        if porder == np.inf:
myq406450149's avatar
myq406450149 已提交
29
            r = np.amax(np.abs(x), keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
30
        elif porder == -np.inf:
myq406450149's avatar
myq406450149 已提交
31
            r = np.amin(np.abs(x), keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
32
        else:
myq406450149's avatar
myq406450149 已提交
33
            r = np.linalg.norm(x, ord=porder, keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
34 35 36 37 38 39 40 41 42 43
    elif isinstance(axis, list or tuple) and len(axis) == 2:
        if porder == np.inf:
            axis = tuple(axis)
            r = np.amax(np.abs(x), axis=axis, keepdims=keepdims)
        elif porder == -np.inf:
            axis = tuple(axis)
            r = np.amin(np.abs(x), axis=axis, keepdims=keepdims)
        elif porder == 0:
            axis = tuple(axis)
            r = x.astype(bool)
myq406450149's avatar
myq406450149 已提交
44
            r = np.sum(r, axis, keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
45 46
        elif porder == 1:
            axis = tuple(axis)
myq406450149's avatar
myq406450149 已提交
47
            r = np.sum(np.abs(x), axis, keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
48 49 50 51 52 53 54 55 56 57 58
        else:
            axis = tuple(axis)
            xp = np.power(np.abs(x), porder)
            s = np.sum(xp, axis=axis, keepdims=keepdims)
            r = np.power(s, 1.0 / porder)
    else:
        if isinstance(axis, list):
            axis = tuple(axis)
        r = np.linalg.norm(
            x, ord=porder, axis=axis, keepdims=keepdims).astype(x.dtype)

59 60 61 62 63
    return r


def frobenius_norm(x, axis=None, keepdims=False):
    if isinstance(axis, list): axis = tuple(axis)
myq406450149's avatar
myq406450149 已提交
64
    if axis is None: x = x.reshape(1, x.size)
65 66
    r = np.linalg.norm(
        x, ord='fro', axis=axis, keepdims=keepdims).astype(x.dtype)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    return r


class TestFrobeniusNormOp(OpTest):
    def setUp(self):
        self.op_type = "frobenius_norm"
        self.init_test_case()
        x = (np.random.random(self.shape) + 1.0).astype(self.dtype)
        norm = frobenius_norm(x, self.axis, self.keepdim)
        self.reduce_all = (len(self.axis) == len(self.shape))
        self.inputs = {'X': x}
        self.attrs = {
            'dim': list(self.axis),
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }
        self.outputs = {'Out': norm}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = (1, 2)
        self.keepdim = False
        self.dtype = "float64"


class TestFrobeniusNormOp2(TestFrobeniusNormOp):
    def init_test_case(self):
        self.shape = [5, 5, 5]
        self.axis = (0, 1)
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestPnormOp(OpTest):
    def setUp(self):
        self.op_type = "p_norm"
        self.init_test_case()
        x = (np.random.random(self.shape) + 0.5).astype(self.dtype)
        norm = p_norm(x, self.axis, self.porder, self.keepdim)
        self.inputs = {'X': x}
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
            'porder': float(self.porder)
        }
        self.outputs = {'Out': norm}
123
        self.gradient = self.calc_gradient()
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = 1
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = False
        self.dtype = "float64"

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    def calc_gradient(self):
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
            'porder': float(self.porder)
        }
        x = self.inputs["X"]
        porder = self.attrs["porder"]
        axis = self.attrs["axis"]
        if porder == 0:
            grad = np.zeros(x.shape).astype(x.dtype)
        elif porder in [float("inf"), float("-inf")]:
            norm = p_norm(x, axis=axis, porder=porder, keepdims=True)
            x_abs = np.abs(x)
            grad = np.sign(x)
            grad[x_abs != norm] = 0.0
        else:
            norm = p_norm(x, axis=axis, porder=porder, keepdims=True)
            grad = np.power(norm, 1 - porder) * np.power(
                np.abs(x), porder - 1) * np.sign(x)

        numel = 1
        for s in x.shape:
            numel *= s
        numel /= x.shape[axis]
        return [grad.astype(x.dtype) * 1 / numel]

167 168 169 170 171 172 173 174 175 176 177 178 179 180

class TestPnormOp2(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
class TestPnormOp3(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = np.inf
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


class TestPnormOp4(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = -np.inf
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


class TestPnormOp5(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = 0
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


myq406450149's avatar
myq406450149 已提交
220
def run_fro(self, p, axis, shape_x, dtype, keep_dim, check_dim=False):
221 222
    with fluid.program_guard(fluid.Program()):
        data = fluid.data(name="X", shape=shape_x, dtype=dtype)
myq406450149's avatar
myq406450149 已提交
223
        out = paddle.norm(x=data, p=p, axis=axis, keepdim=keep_dim)
224 225 226
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
myq406450149's avatar
myq406450149 已提交
227
        expected_result = frobenius_norm(np_input, axis=axis, keepdims=keep_dim)
228 229
        result, = exe.run(feed={"X": np_input}, fetch_list=[out])
    self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)
myq406450149's avatar
myq406450149 已提交
230 231 232 233
    if keep_dim and check_dim:
        self.assertEqual(
            (np.abs(np.array(result.shape) - np.array(expected_result.shape)) <
             1e-6).all(), True)
234 235


myq406450149's avatar
myq406450149 已提交
236
def run_pnorm(self, p, axis, shape_x, dtype, keep_dim, check_dim=False):
237 238
    with fluid.program_guard(fluid.Program()):
        data = fluid.data(name="X", shape=shape_x, dtype=dtype)
myq406450149's avatar
myq406450149 已提交
239
        out = paddle.norm(x=data, p=p, axis=axis, keepdim=keep_dim)
240 241 242
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
myq406450149's avatar
myq406450149 已提交
243 244
        expected_result = p_norm(
            np_input, porder=p, axis=axis, keepdims=keep_dim).astype(dtype)
245
        result, = exe.run(feed={"X": np_input}, fetch_list=[out])
myq406450149's avatar
myq406450149 已提交
246 247 248 249 250
    self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)
    if keep_dim and check_dim:
        self.assertEqual(
            (np.abs(np.array(result.shape) - np.array(expected_result.shape)) <
             1e-6).all(), True)
myq406450149's avatar
myq406450149 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264


def run_graph(self, p, axis, shape_x, dtype):
    paddle.disable_static()
    shape = [2, 3, 4]
    np_input = np.arange(24).astype('float32') - 12
    np_input = np_input.reshape(shape)
    x = paddle.to_tensor(np_input)
    #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
    # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]
    out_pnorm = paddle.norm(x, p=2, axis=-1)

    # compute frobenius norm along last two dimensions.
    out_fro = paddle.norm(x, p='fro')
myq406450149's avatar
myq406450149 已提交
265
    out_fro = paddle.norm(x, p='fro', axis=0)
myq406450149's avatar
myq406450149 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    out_fro = paddle.norm(x, p='fro', axis=[0, 1])
    # compute 2-order  norm along [0,1] dimension.
    out_pnorm = paddle.norm(x, p=2, axis=[0, 1])
    out_pnorm = paddle.norm(x, p=2)
    #out_pnorm = [17.43559577 16.91153453 16.73320053 16.91153453]
    # compute inf-order  norm
    out_pnorm = paddle.norm(x, p=np.inf)
    #out_pnorm = [12.]
    out_pnorm = paddle.norm(x, p=np.inf, axis=0)
    #out_pnorm = [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]

    # compute -inf-order  norm
    out_pnorm = paddle.norm(x, p=-np.inf)
    #out_pnorm = [0.]
    out_pnorm = paddle.norm(x, p=-np.inf, axis=0)
    # out_fro = [17.43559577 16.91153453 16.73320053 16.91153453]
    paddle.enable_static()
283 284 285 286


class API_NormTest(unittest.TestCase):
    def test_basic(self):
myq406450149's avatar
myq406450149 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        keep_dims = {False, True}
        for keep in keep_dims:
            run_fro(
                self,
                p='fro',
                axis=None,
                shape_x=[2, 3, 4],
                dtype="float32",
                keep_dim=keep)
            run_fro(
                self,
                p='fro',
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=2,
                axis=None,
                shape_x=[3, 4],
                dtype="float32",
                keep_dim=keep)
            run_pnorm(
                self,
                p=2,
                axis=1,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=np.inf,
                axis=0,
                shape_x=[2, 3, 4],
                dtype="float32",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=np.inf,
                axis=None,
                shape_x=[2, 3, 4],
                dtype="float32",
                keep_dim=keep)
            run_pnorm(
                self,
                p=-np.inf,
                axis=0,
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=-np.inf,
                axis=None,
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep)
            run_pnorm(
                self,
                p=0,
                axis=1,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)

            run_pnorm(
                self,
                p=1,
                axis=1,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=0,
                axis=None,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=2,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=2,
                axis=-1,
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=1,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=np.inf,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=-np.inf,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
myq406450149's avatar
myq406450149 已提交
414 415 416 417

    def test_dygraph(self):
        run_graph(self, p='fro', axis=None, shape_x=[2, 3, 4], dtype="float32")

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[10, 10], dtype="float32")
            y_1 = paddle.norm(x, p='fro', name='frobenius_name')
            y_2 = paddle.norm(x, p=2, name='pnorm_name')
            self.assertEqual(('frobenius_name' in y_1.name), True)
            self.assertEqual(('pnorm_name' in y_2.name), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):

            def err_dtype(p, shape_x, xdtype, out=None):
                data = fluid.data(shape=shape_x, dtype=xdtype)
                paddle.norm(data, p=p, out=out)

            self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "int64")
myq406450149's avatar
myq406450149 已提交
434
            self.assertRaises(ValueError, paddle.norm, "inf", [2], "int64")
435 436 437 438 439 440 441 442 443 444
            out = fluid.data(name="out", shape=[1], dtype="int64")
            self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "float64",
                              out)
            self.assertRaises(TypeError, err_dtype, 2, [10], "int64")
            self.assertRaises(TypeError, err_dtype, 2, [10], "float64", out)

            data = fluid.data(name="data_2d", shape=[2, 2], dtype="float64")
            self.assertRaises(ValueError, paddle.norm, data, p="unsupport norm")
            self.assertRaises(ValueError, paddle.norm, data, p=[1])
            self.assertRaises(ValueError, paddle.norm, data, p=[1], axis=-1)
myq406450149's avatar
myq406450149 已提交
445
            self.assertRaises(ValueError, paddle.norm, 0, [1, 0], "float64")
446 447 448 449 450 451 452
            data = fluid.data(name="data_3d", shape=[2, 2, 2], dtype="float64")
            self.assertRaises(
                ValueError, paddle.norm, data, p='unspport', axis=[-3, -2, -1])


if __name__ == '__main__':
    unittest.main()