imperative.cc 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
J
Jiabin Yang 已提交
23
#include <string>
24 25
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
26 27
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
28
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/imperative/nccl_context.h"
30
#include "paddle/fluid/imperative/profiler.h"
31
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
32
#include "paddle/fluid/imperative/type_defs.h"
33

34 35
#include "paddle/fluid/pybind/pybind_boost_headers.h"

36 37 38
namespace paddle {
namespace pybind {

39 40
namespace py = ::pybind11;

41 42 43 44
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

45 46 47 48
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
49
                      Forward, inputs);  // NOLINT
50 51 52
  }
};

J
Jiabin Yang 已提交
53 54 55
// warper for pyobject to avoid imperative module depend on python
// TODO(jiabin) Add OpBase's pybind interface back to enable backward hook
class PYBIND11_HIDDEN PyCallableObject {
56
 public:
J
Jiabin Yang 已提交
57 58 59 60 61 62 63 64 65 66
  PyCallableObject(std::shared_ptr<py::object> py_obj_ptr)
      : py_obj_ptr_(std::move(py_obj_ptr)) {}
  ~PyCallableObject() {
    py::call_guard<py::gil_scoped_acquire>();
    py_obj_ptr_.reset();
  }
  void operator()() {
    py::call_guard<py::gil_scoped_acquire>();
    py_obj_ptr_->operator()(this);
  }
67

J
Jiabin Yang 已提交
68 69
 private:
  std::shared_ptr<py::object> py_obj_ptr_;
70 71
};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// Function like obj.attr_name in Python.
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  const char *kIVarField = "_ivar";
  PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
  std::vector<std::shared_ptr<imperative::VarBase>> result;

  if (py_ivar) {  // Variable
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  } else if (PyList_Check(py_obj)) {  // List of Variable
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
      PyObject *py_ivar =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kIVarField);
      PADDLE_ENFORCE_NOT_NULL(py_ivar);
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
      Py_DECREF(py_ivar);
    }
  } else if (PyTuple_Check(py_obj)) {  // Tuple of Variable
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
      PyObject *py_ivar =
          PyObject_GetAttrString(PyTuple_GET_ITEM(py_obj, i), kIVarField);
      PADDLE_ENFORCE_NOT_NULL(py_ivar);
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
      Py_DECREF(py_ivar);
    }
  } else {
    PADDLE_THROW(
J
Jiabin Yang 已提交
141
        "unsupported type %s, must be Variable, list[Variable] or "
142 143 144 145 146 147 148
        "tuple[Variable]",
        py::str(handle));
  }

  return result;
}

J
Jiabin Yang 已提交
149
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
150

J
Jiabin Yang 已提交
151 152 153
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
154 155 156 157 158 159
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
160 161 162

  PADDLE_ENFORCE_EQ(PyErr_Occurred() == nullptr, true,
                    py::str(py::handle(PyErr_Occurred())));
163 164 165
  return result;
}

J
Jiabin Yang 已提交
166 167 168 169 170 171 172 173 174 175
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
  } else {
    return framework::ToTypeName(var.Var().Type());
  }
}

176
// Bind Methods
J
Jiabin Yang 已提交
177
void BindImperative(py::module *m_ptr) {
178 179 180
  auto &m = *m_ptr;

  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
181 182 183 184 185 186 187 188
      m, "BackwardStrategy", R"DOC(

    BackwardStrategy is a descriptor of a how to run the backward process. Now it has:

    1. :code:`sort_sum_gradient`, which will sum the gradient by the reverse order of trace.

    Examples:

L
lujun 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        .. code-block:: python

          import numpy as np
          import paddle.fluid as fluid
          from paddle.fluid import FC

          x = np.ones([2, 2], np.float32)
          with fluid.dygraph.guard():
              inputs2 = []
              for _ in range(10):
                  inputs2.append(fluid.dygraph.base.to_variable(x))
              ret2 = fluid.layers.sums(inputs2)
              loss2 = fluid.layers.reduce_sum(ret2)
              backward_strategy = fluid.dygraph.BackwardStrategy()
              backward_strategy.sort_sum_gradient = True
              loss2.backward(backward_strategy)
205
      )DOC");
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
221 222 223 224
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });

225
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
226 227
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
228
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
229 230 231 232
      .def("__init__",
           [](imperative::VarBase &self, const std::string &name,
              framework::proto::VarType::Type type,
              framework::proto::VarType::Type dtype,
233
              const std::vector<int> &dims, bool persistable) {
J
Jiabin Yang 已提交
234 235 236 237 238 239 240 241 242 243
             new (&self) imperative::VarBase(name);
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
244 245
      .def("_run_backward",
           [](imperative::VarBase &self,
J
Jiabin Yang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
             // TODO(jiabin): when we impl more backward execution we can select
             // them

             imperative::Engine *engine = tracer.GetDefaultEngine();
             VLOG(3) << "Start backward";
             engine->Init(&self, bckst);
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
264 265
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
      .def("_grad_ivar",
J
Jiabin Yang 已提交
266 267 268 269 270 271 272 273 274
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
             if (grad_var && grad_var->Var().IsInitialized()) {
               return grad_var;
             } else {
               return std::shared_ptr<imperative::VarBase>(nullptr);
             }
           },
           py::return_value_policy::copy)
275 276
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
277 278
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
279 280
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
281 282 283
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
284 285 286
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
J
Jiabin Yang 已提交
287 288 289 290
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
291
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
292 293 294 295 296 297 298 299
                  self.Var().Get<framework::LoDTensor>().dims());
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
300
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
J
Jiabin Yang 已提交
301
      .def_property("persistable", &imperative::VarBase::Persistable,
302
                    &imperative::VarBase::SetPersistable)
303 304 305
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient);
306 307 308

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
309 310 311 312 313
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
314

315
  py::class_<imperative::Tracer>(m, "Tracer", "")
316
      .def("__init__",
J
Jiabin Yang 已提交
317
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
M
minqiyang 已提交
318
      .def("trace",
J
Jiabin Yang 已提交
319 320 321 322 323 324
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
325 326
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
327 328
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
329
             }
M
minqiyang 已提交
330
           })
J
Jiabin Yang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
344 345

  // define parallel context
346 347 348
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
349 350
      .def_property(
          "nranks",
351 352
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
353 354 355
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
356
                    [](const imperative::ParallelStrategy &self) {
357 358
                      return self.local_rank_;
                    },
359
                    [](imperative::ParallelStrategy &self, int local_rank) {
360 361 362 363
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
364
          [](const imperative::ParallelStrategy &self) {
365 366
            return self.trainer_endpoints_;
          },
367
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
368 369 370
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
371
                    [](const imperative::ParallelStrategy &self) {
372 373
                      return self.current_endpoint_;
                    },
374 375
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
376
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
377 378
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
379 380

  nccl_ctx
381 382 383
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
384
#endif
385 386 387 388
}

}  // namespace pybind
}  // namespace paddle