channel_impl.h 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <stddef.h>  // for size_t
#include <atomic>
#include <condition_variable>
#include <deque>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {

template <typename T>
class ChannelImpl : public paddle::framework::Channel<T> {
  friend Channel<T> *paddle::framework::MakeChannel<T>(size_t);
  friend void paddle::framework::CloseChannel<T>(Channel<T> *);

 public:
32 33
  virtual bool CanSend();
  virtual bool CanReceive();
34 35 36 37 38
  virtual bool Send(T *);
  virtual bool Receive(T *);
  virtual size_t Cap() { return cap_; }
  virtual void Lock();
  virtual void Unlock();
39
  virtual bool IsClosed();
40 41 42 43
  virtual void Close();
  ChannelImpl(size_t);
  virtual ~ChannelImpl();

44 45 46 47 48 49 50 51 52 53
  virtual void AddToSendQ(const void *referrer, T *data,
                          std::shared_ptr<std::condition_variable_any> cond,
                          std::function<bool(ChannelAction)> cb);
  virtual void AddToReceiveQ(const void *referrer, T *data,
                             std::shared_ptr<std::condition_variable_any> cond,
                             std::function<bool(ChannelAction)> cb);

  virtual void RemoveFromSendQ(const void *referrer);
  virtual void RemoveFromReceiveQ(const void *referrer);

54 55 56
 private:
  struct QueueMessage {
    T *data;
57
    std::shared_ptr<std::condition_variable_any> cond;
58 59
    bool chan_closed = false;
    bool completed = false;
60 61
    const void *referrer;  // TODO(thuan): figure out better way to do this
    std::function<bool(ChannelAction)> callback;
62

63 64 65 66 67
    QueueMessage(T *item)
        : data(item), cond(std::make_shared<std::condition_variable_any>()) {}

    QueueMessage(T *item, std::shared_ptr<std::condition_variable_any> cond)
        : data(item), cond(cond) {}
68 69

    void Wait(std::unique_lock<std::recursive_mutex> &lock) {
70
      cond->wait(lock, [this]() { return completed; });
71 72 73 74
    }

    void Notify() {
      completed = true;
75
      cond->notify_all();
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    }
  };

  bool send_return(bool value) {
    send_ctr--;
    destructor_cond_.notify_all();
    return value;
  }

  bool recv_return(bool value) {
    recv_ctr--;
    destructor_cond_.notify_all();
    return value;
  }

  size_t cap_;
  std::recursive_mutex mu_;
  bool closed_;
  std::deque<T> buf_;
  std::deque<std::shared_ptr<QueueMessage>> recvq;
  std::deque<std::shared_ptr<QueueMessage>> sendq;
  std::atomic<unsigned> send_ctr{0};
  std::atomic<unsigned> recv_ctr{0};
  std::condition_variable_any destructor_cond_;
};

template <typename T>
ChannelImpl<T>::ChannelImpl(size_t capacity)
    : cap_(capacity), closed_(false), send_ctr(0), recv_ctr(0) {
  PADDLE_ENFORCE_GE(capacity, 0);
}

108 109 110 111 112 113 114 115 116 117 118 119
template <typename T>
bool ChannelImpl<T>::CanSend() {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  return !closed_ && (!recvq.empty() || buf_.size() < cap_);
}

template <typename T>
bool ChannelImpl<T>::CanReceive() {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  return !(closed_ && buf_.empty()) && (!sendq.empty() || buf_.size() > 0);
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
template <typename T>
bool ChannelImpl<T>::Send(T *item) {
  send_ctr++;
  std::unique_lock<std::recursive_mutex> lock{mu_};

  // If channel is closed, do nothing
  if (closed_) {
    lock.unlock();
    // TODO(abhinavarora) Should panic on closed channel
    return send_return(false);
  }

  // If there is a receiver, directly pass the value we want
  // to send to the receiver, bypassing the channel buffer if any
  if (!recvq.empty()) {
    std::shared_ptr<QueueMessage> m = recvq.front();
    recvq.pop_front();
    // Do the data transfer
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    // We will do this data transfer if either of the following
    // cases are true
    // 1. callback == nullptr // This means it was a regular channel send
    // 2. callback returns true
    bool do_send = true;
    if (m->callback != nullptr) do_send = m->callback(ChannelAction::SEND);
    if (do_send)
      *(m->data) = std::move(*item);
    else
      // We cannot do the data transfer because
      // this QueueMessage was added by Select
      // and some other case was executed.
      // So call the Send function again.
      // We do not care about notifying other
      // because they would have been notified
      // by the executed select case.
      return Send(item);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    // Wake up the blocked process and unlock
    m->Notify();
    lock.unlock();
    return send_return(true);
  }

  // Unbuffered channel will always bypass this
  // If buffered channel has space in buffer,
  // write the element to the buffer.
  if (buf_.size() < cap_) {
    // Copy to buffer
    buf_.push_back(std::move(*item));
    // Release lock and return true
    lock.unlock();
    return send_return(true);
  }

  // Block on channel, because some receiver will complete
  // the operation for us
  auto m = std::make_shared<QueueMessage>(item);
  sendq.push_back(m);
  m->Wait(lock);
  // TODO(abhinavarora) Should panic on closed channel
  return send_return(!m->chan_closed);
}

template <typename T>
bool ChannelImpl<T>::Receive(T *item) {
  recv_ctr++;
  std::unique_lock<std::recursive_mutex> lock{mu_};

  // If channel is closed and buffer is empty or
  // channel is unbuffered
  if (closed_ && buf_.empty()) {
    lock.unlock();
    return recv_return(false);
  }

  // If there is a sender, directly receive the value we want
  // from the sender, bypassing the channel buffer if any
  if (!sendq.empty()) {
    std::shared_ptr<QueueMessage> m = sendq.front();
    sendq.pop_front();
    // Do the data transfer
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    // We will do this data transfer if either of the following
    // cases are true
    // 1. callback == nullptr // This means it was a regular channel send
    // 2. callback returns true
    bool do_receive = true;
    if (m->callback != nullptr)
      do_receive = m->callback(ChannelAction::RECEIVE);
    if (do_receive)
      *item = std::move(*(m->data));
    else
      // We cannot do the data transfer because
      // this QueueMessage was added by Select
      // and some other case was executed.
      // So call the Receive function again.
      // We do not care about notifying other
      // because they would have been notified
      // by the executed select case.
      return Receive(item);

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    // Wake up the blocked process and unlock
    m->Notify();
    lock.unlock();
    return recv_return(true);
  }

  // If this is a buffered channel and there are items in buffer
  if (buf_.size() > 0) {
    // Directly read from buffer
    *item = std::move(buf_.front());
    buf_.pop_front();
    // Release lock and return true
    lock.unlock();
    return recv_return(true);
  }

  // No sender available, block on this channel
  // Some receiver will complete the option for us
  auto m = std::make_shared<QueueMessage>(item);
  recvq.push_back(m);
  m->Wait(lock);

  return recv_return(!m->chan_closed);
}

template <typename T>
void ChannelImpl<T>::Lock() {
  mu_.lock();
}

template <typename T>
void ChannelImpl<T>::Unlock() {
  mu_.unlock();
}

254 255 256 257 258 259
template <typename T>
bool ChannelImpl<T>::IsClosed() {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  return closed_;
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
template <typename T>
void ChannelImpl<T>::Close() {
  std::unique_lock<std::recursive_mutex> lock{mu_};

  if (closed_) {
    // TODO(abhinavarora): closing an already closed channel should panic
    lock.unlock();
    return;
  }

  closed_ = true;

  // Empty the readers
  while (!recvq.empty()) {
    std::shared_ptr<QueueMessage> m = recvq.front();
    recvq.pop_front();
    m->chan_closed = true;
277 278 279 280 281 282

    // Execute callback function (if any)
    if (m->callback != nullptr) {
      m->callback(ChannelAction::CLOSE);
    }

283 284 285 286 287 288 289 290
    m->Notify();
  }

  // Empty the senders
  while (!sendq.empty()) {
    std::shared_ptr<QueueMessage> m = sendq.front();
    sendq.pop_front();
    m->chan_closed = true;
291 292 293 294 295 296

    // Execute callback function (if any)
    if (m->callback != nullptr) {
      m->callback(ChannelAction::CLOSE);
    }

297 298 299 300
    m->Notify();
  }
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
template <typename T>
void ChannelImpl<T>::AddToSendQ(
    const void *referrer, T *data,
    std::shared_ptr<std::condition_variable_any> cond,
    std::function<bool(ChannelAction)> cb) {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  auto m = std::make_shared<QueueMessage>(data, cond);
  m->referrer = referrer;
  m->callback = cb;
  sendq.push_back(m);
}

template <typename T>
void ChannelImpl<T>::AddToReceiveQ(
    const void *referrer, T *data,
    std::shared_ptr<std::condition_variable_any> cond,
    std::function<bool(ChannelAction)> cb) {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  auto m = std::make_shared<QueueMessage>(data, cond);
  m->referrer = referrer;
  m->callback = cb;
  recvq.push_back(m);
}

template <typename T>
void ChannelImpl<T>::RemoveFromSendQ(const void *referrer) {
  std::lock_guard<std::recursive_mutex> lock{mu_};

  for (auto it = sendq.begin(); it != sendq.end();) {
    std::shared_ptr<QueueMessage> sendMsg = (std::shared_ptr<QueueMessage>)*it;

    if (sendMsg->referrer == referrer) {
      it = sendq.erase(it);
      send_ctr--;
    } else {
      ++it;
    }
  }
}

template <typename T>
void ChannelImpl<T>::RemoveFromReceiveQ(const void *referrer) {
  std::lock_guard<std::recursive_mutex> lock{mu_};

  for (auto it = recvq.begin(); it != recvq.end();) {
    std::shared_ptr<QueueMessage> recvMsg = (std::shared_ptr<QueueMessage>)*it;

    if (recvMsg->referrer == referrer) {
      it = recvq.erase(it);
      recv_ctr--;
    } else {
      ++it;
    }
  }
}

357 358 359 360 361 362 363 364 365 366 367 368
template <typename T>
ChannelImpl<T>::~ChannelImpl() {
  Close();
  // The destructor must wait for all readers and writers to complete their task
  // The channel has been closed, so we will not accept new readers and writers
  std::unique_lock<std::recursive_mutex> lock{mu_};
  destructor_cond_.wait(lock,
                        [this]() { return send_ctr == 0 && recv_ctr == 0; });
}

}  // namespace framework
}  // namespace paddle