softmax.cu 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <vector>

16
#include "paddle/fluid/operators/math/math_function.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/math/softmax_impl.h"
19 20 21
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#else
22
#include "paddle/fluid/platform/cudnn_helper.h"
23
#endif
C
caoying03 已提交
24 25 26 27 28

namespace paddle {
namespace operators {
namespace math {

29 30 31 32 33 34 35 36 37 38 39 40 41
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
void SoftmaxCUDNNFunctor<T>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor* X,
    framework::Tensor* Y) {
  // ------------------- cudnn descriptors ---------------------
  ScopedTensorDescriptor xDesc;
  ScopedTensorDescriptor yDesc;
42
  std::vector<int> cudnn_tensor_dims = framework::vectorize<int>(X->dims());
43 44 45 46 47 48 49 50 51
  DataLayout layout = DataLayout::kNCHW;
  if (cudnn_tensor_dims.size() == 5) {
    layout = DataLayout::kNCDHW;
  }
  // NOTE(*) : cudnn softmax only support >= 4D Tensor,
  // fill 1 at unused dims
  if (cudnn_tensor_dims.size() <= 2) {
    cudnn_tensor_dims.resize(4, 1);
  }
52 53 54 55 56 57 58 59 60 61
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t cudnn_x_desc =
      xDesc.descriptor<T>(layout, cudnn_tensor_dims);
  miopenTensorDescriptor_t cudnn_y_desc =
      xDesc.descriptor<T>(layout, cudnn_tensor_dims);
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSoftmaxForward(
      context.cudnn_handle(), CudnnDataType<T>::kOne(), cudnn_x_desc,
      X->data<T>(), CudnnDataType<T>::kZero(), cudnn_y_desc,
      Y->mutable_data<T>(context.GetPlace())));
#else
62 63 64 65
  cudnnTensorDescriptor_t cudnn_x_desc =
      xDesc.descriptor<T>(layout, cudnn_tensor_dims);
  cudnnTensorDescriptor_t cudnn_y_desc =
      xDesc.descriptor<T>(layout, cudnn_tensor_dims);
66
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
67 68 69 70
      context.cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
      CUDNN_SOFTMAX_MODE_INSTANCE, CudnnDataType<T>::kOne(), cudnn_x_desc,
      X->data<T>(), CudnnDataType<T>::kZero(), cudnn_y_desc,
      Y->mutable_data<T>(context.GetPlace())));
71
#endif
72 73 74 75 76 77 78 79 80 81
}

template <typename T>
void SoftmaxGradCUDNNFunctor<T>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor* Y,
    const framework::Tensor* YGrad, framework::Tensor* XGrad) {
  // ------------------- cudnn descriptors ---------------------
  ScopedTensorDescriptor yDesc;
  ScopedTensorDescriptor dyDesc;
  ScopedTensorDescriptor dxDesc;
82
  std::vector<int> cudnn_tensor_dims = framework::vectorize<int>(Y->dims());
83 84 85 86 87 88 89 90 91
  DataLayout layout = DataLayout::kNCHW;
  if (cudnn_tensor_dims.size() == 5) {
    layout = DataLayout::kNCDHW;
  }
  // NOTE(*) : cudnn softmax only support >= 4D Tensor,
  // fill 1 at unused dims
  if (cudnn_tensor_dims.size() <= 2) {
    cudnn_tensor_dims.resize(4, 1);
  }
92 93 94 95 96 97 98 99 100 101 102 103 104
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t cudnn_y_desc =
      yDesc.descriptor<T>(layout, cudnn_tensor_dims);
  miopenTensorDescriptor_t cudnn_xgrad_desc =
      dxDesc.descriptor<T>(layout, cudnn_tensor_dims);
  miopenTensorDescriptor_t cudnn_ygrad_desc =
      dyDesc.descriptor<T>(layout, cudnn_tensor_dims);
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSoftmaxBackward(
      context.cudnn_handle(), CudnnDataType<T>::kOne(), cudnn_y_desc,
      Y->data<T>(), cudnn_ygrad_desc, YGrad->data<T>(),
      CudnnDataType<T>::kZero(), cudnn_xgrad_desc,
      XGrad->mutable_data<T>(context.GetPlace())));
#else
105 106 107 108 109 110
  cudnnTensorDescriptor_t cudnn_y_desc =
      yDesc.descriptor<T>(layout, cudnn_tensor_dims);
  cudnnTensorDescriptor_t cudnn_xgrad_desc =
      dxDesc.descriptor<T>(layout, cudnn_tensor_dims);
  cudnnTensorDescriptor_t cudnn_ygrad_desc =
      dyDesc.descriptor<T>(layout, cudnn_tensor_dims);
111
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
112 113 114 115 116
      context.cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
      CUDNN_SOFTMAX_MODE_INSTANCE, CudnnDataType<T>::kOne(), cudnn_y_desc,
      Y->data<T>(), cudnn_ygrad_desc, YGrad->data<T>(),
      CudnnDataType<T>::kZero(), cudnn_xgrad_desc,
      XGrad->mutable_data<T>(context.GetPlace())));
117
#endif
118 119 120
}

template class SoftmaxCUDNNFunctor<float>;
121
template class SoftmaxCUDNNFunctor<platform::float16>;
122
template class SoftmaxGradCUDNNFunctor<float>;
C
chengduo 已提交
123
template class SoftmaxGradCUDNNFunctor<platform::float16>;
124

125 126 127 128 129 130
// MIOPEN do not support double
#ifndef PADDLE_WITH_HIP
template class SoftmaxCUDNNFunctor<double>;
template class SoftmaxGradCUDNNFunctor<double>;
#endif

131 132 133 134 135 136 137 138
template class SoftmaxFunctor<platform::CUDADeviceContext, platform::float16,
                              false>;
template class SoftmaxFunctor<platform::CUDADeviceContext, platform::float16,
                              true>;
template class SoftmaxFunctor<platform::CUDADeviceContext, float, false>;
template class SoftmaxFunctor<platform::CUDADeviceContext, double, false>;
template class SoftmaxFunctor<platform::CUDADeviceContext, float, true>;
template class SoftmaxFunctor<platform::CUDADeviceContext, double, true>;
Q
QI JUN 已提交
139 140
template class SoftmaxGradFunctor<platform::CUDADeviceContext, float>;
template class SoftmaxGradFunctor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
141 142
template class SoftmaxGradFunctor<platform::CUDADeviceContext,
                                  platform::float16>;
C
caoying03 已提交
143 144 145 146

}  // namespace math
}  // namespace operators
}  // namespace paddle