test_adamw_op.py 4.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
import paddle.fluid as fluid


class TestAdamWOp(unittest.TestCase):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
25
        a = paddle.to_tensor(value)
26
        linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
27 28 29 30 31
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)
32 33 34 35 36 37

        for _ in range(2):
            out = linear(a)
            out.backward()
            adam.step()
            adam.clear_gradients()
M
MRXLT 已提交
38 39 40 41

    def test_adamw_op_coverage(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
42
        a = paddle.to_tensor(value)
43
        linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
44 45 46 47 48 49 50 51
        adam = paddle.optimizer.AdamW(
            learning_rate=0.0,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)
        assert (adam.__str__() is not None)

    def test_adamw_op(self):
52
        paddle.enable_static()
M
MRXLT 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        place = fluid.CPUPlace()
        shape = [2, 3, 8, 8]
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
                conv = fluid.layers.conv2d(data, 8, 3)
                loss = paddle.mean(conv)

                beta1 = fluid.layers.create_global_var(
                    shape=[1], value=0.85, dtype='float32', persistable=True)
                beta2 = fluid.layers.create_global_var(
                    shape=[1], value=0.95, dtype='float32', persistable=True)
                betas = [beta1, beta2]
                opt = paddle.optimizer.AdamW(
                    learning_rate=1e-5,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01,
                    epsilon=1e-8)
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None
81
        paddle.disable_static()
M
MRXLT 已提交
82

M
MRXLT 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95
    def test_adamw_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.AdamW(
                0.1, beta1=-1, parameters=linear.parameters())
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.AdamW(
                0.1, beta2=-1, parameters=linear.parameters())
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.AdamW(
                0.1, epsilon=-1, parameters=linear.parameters())

96 97 98 99 100
    def test_adamw_lr_decay(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
101 102 103

        lr = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=10)
        wd = 0.1
104
        adam = paddle.optimizer.AdamW(
105
            learning_rate=lr,
106 107
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
108 109 110 111 112 113 114 115 116 117 118 119 120 121
            weight_decay=wd)

        for _ in range(2):
            out = linear(a)
            out.backward()
            lr_to_coeff = adam._lr_to_coeff
            adam.step()

            for i, value in enumerate(lr_to_coeff.values()):
                self.assertAlmostEqual(value.numpy()[0], 1.0 - lr() * wd)
            self.assertEqual(len(adam._lr_to_coeff), 0)

            lr.step()
            adam.clear_gradients()
122

M
MRXLT 已提交
123 124 125

if __name__ == "__main__":
    unittest.main()