sequence_softmax_op.cu 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <cub/cub.cuh>  // NOLINT
S
sneaxiy 已提交
17
#include "paddle/fluid/operators/math.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename T, int BlockDim>
using BlockReduce = cub::BlockReduce<T, BlockDim>;

template <typename T, int BlockDim>
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;

template <typename T, int BlockDim>
__global__ void sequence_softmax_kernel(const T *in_data, const size_t *ref_lod,
                                        const size_t src_hight, T *out_data) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
  __shared__ T shared_max_data;
  __shared__ T shared_sum_data;

  for (int i = blockIdx.x; i < src_hight; i += gridDim.x) {
    size_t start = ref_lod[i];
    size_t span = ref_lod[i + 1] - start;

    // Find the max ele
    T max_ele = -FLT_MAX;
    for (int tid = threadIdx.x; tid < span; tid += blockDim.x) {
      T ele = in_data[start + tid];
      max_ele = max_ele > ele ? max_ele : ele;
    }
    max_ele =
        BlockReduce<T, BlockDim>(temp_storage).Reduce(max_ele, cub::Max());
    if (threadIdx.x == 0) {
      shared_max_data = max_ele;
    }
    __syncthreads();

    // sum
    T sum_data = 0;
    for (int tid = threadIdx.x; tid < span; tid += blockDim.x) {
      T ele = in_data[start + tid];
      sum_data += real_exp(ele - shared_max_data);
    }
    sum_data =
        BlockReduce<T, BlockDim>(temp_storage).Reduce(sum_data, cub::Sum());
    if (threadIdx.x == 0) {
      shared_sum_data = sum_data;
    }
    __syncthreads();

    // get final resit
    for (int tid = threadIdx.x; tid < span; tid += blockDim.x) {
      T ele = in_data[start + tid];
      ele = real_exp(ele - shared_max_data) / shared_sum_data;
      out_data[start + tid] = ele;
    }
  }
}

template <typename T, int BlockDim>
__global__ void sequence_softmax_grad_kernel(const T *softmax_grad_data,
                                             const T *softmax_data,
                                             const size_t *ref_lod,
                                             const size_t src_hight,
                                             T *dx_data) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
  __shared__ T shared_data;

  for (int i = blockIdx.x; i < src_hight; i += gridDim.x) {
    size_t start = ref_lod[i];
    size_t span = ref_lod[i + 1] - start;

    T result = 0;
    for (int tid = threadIdx.x; tid < span; tid += blockDim.x) {
      size_t idx = start + tid;
      T s_g_d = softmax_grad_data[idx];
      T s_d = softmax_data[idx];
      result += s_g_d * s_d;
    }
    result = BlockReduce<T, BlockDim>(temp_storage).Reduce(result, cub::Sum());
    if (threadIdx.x == 0) {
      shared_data = result;
    }
    __syncthreads();

    for (int tid = threadIdx.x; tid < span; tid += blockDim.x) {
      size_t idx = start + tid;
      T s_g_d = softmax_grad_data[idx];
      T s_d = softmax_data[idx];
      dx_data[idx] = (s_g_d - shared_data) * s_d;
    }
  }
}

template <typename T>
struct SequenceSoftmaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext &context,
                  const LoDTensor &x,
                  const framework::Vector<size_t> &ref_lod, /*referenced lod*/
                  LoDTensor *out) {
T
tianshuo78520a 已提交
118
    int height = ref_lod.size() - 1;
119 120 121 122 123 124 125 126 127 128

    const int kThreadsPerBlock = 32;
    int thread_x = kThreadsPerBlock;
    int max_threads = context.GetMaxPhysicalThreadCount();
    int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);

    dim3 block_size(thread_x);
    dim3 grid_size(max_blocks);
    sequence_softmax_kernel<
        T, kThreadsPerBlock><<<grid_size, block_size, 0, context.stream()>>>(
T
tianshuo78520a 已提交
129
        x.data<T>(), ref_lod.CUDAData(context.GetPlace()), height,
130 131 132 133 134 135 136 137 138 139
        out->mutable_data<T>(context.GetPlace()));
  }
};

template <typename T>
struct SequenceSoftmaxGradFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext &context,
                  const LoDTensor &dout, const LoDTensor &out,
                  const framework::Vector<size_t> &ref_lod, /*referenced lod*/
                  LoDTensor *dx) {
T
tianshuo78520a 已提交
140
    size_t height = ref_lod.size() - 1;
141 142 143 144 145 146 147 148 149 150 151 152

    const int kThreadsPerBlock = 32;
    int thread_x = kThreadsPerBlock;
    int max_threads = context.GetMaxPhysicalThreadCount();
    int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);

    dim3 block_size(thread_x);
    dim3 grid_size(max_blocks);

    sequence_softmax_grad_kernel<
        T, kThreadsPerBlock><<<grid_size, block_size, 0, context.stream()>>>(
        dout.data<T>(), out.data<T>(), ref_lod.CUDAData(context.GetPlace()),
T
tianshuo78520a 已提交
153
        height, dx->mutable_data<T>(context.GetPlace()));
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    sequence_softmax,
    ops::SequenceSoftmaxKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceSoftmaxKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    sequence_softmax_grad,
    ops::SequenceSoftmaxGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceSoftmaxGradKernel<paddle::platform::CUDADeviceContext,
                                   double>);