scale_op.h 2.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20
#include "paddle/fluid/framework/pten_utils.h"

// only can include the headers in paddle/top/api dirs
21
#include "paddle/pten/api/lib/utils/tensor_utils.h"
22
#include "paddle/pten/kernels/scale_kernel.h"
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25
namespace paddle {
namespace operators {
26

27 28 29
template <typename T>
static inline T GetAttrFromTensor(const framework::Tensor* tensor) {
  const auto* tensor_data = tensor->data<T>();
30
  framework::Tensor cpu_tensor;
31 32
  if (platform::is_gpu_place(tensor->place()) ||
      platform::is_npu_place(tensor->place())) {
33 34
    paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(),
                                      &cpu_tensor);
35
    tensor_data = cpu_tensor.data<T>();
36 37 38 39
  }
  return tensor_data[0];
}

40
// See Note [ Why still keep the original kernel implementation? ]
Q
QI JUN 已提交
41
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
42
class ScaleKernel : public framework::OpKernel<T> {
Y
Yu Yang 已提交
43
 public:
44 45
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto* in_var = ctx.InputVar("X");
S
sneaxiy 已提交
46

47
    auto bias = ctx.Attr<float>("bias");
S
sneaxiy 已提交
48
    auto bias_after_scale = ctx.Attr<bool>("bias_after_scale");
49
    auto scale = ctx.Attr<float>("scale");
50 51
    auto* out_var = ctx.OutputVar("Out");

52 53
    if (ctx.HasInput("ScaleTensor")) {
      auto* scale_tensor = ctx.Input<framework::Tensor>("ScaleTensor");
54
      scale = static_cast<float>(GetAttrFromTensor<T>(scale_tensor));
55 56
    }

57
    auto* in = framework::GetLoDTensorOrSelectedRowsValueFromVar(*in_var);
C
chengduo 已提交
58 59 60
    auto* out =
        framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(out_var);
    out->mutable_data<T>(in->place());
61
    auto& dev_ctx = ctx.device_context<DeviceContext>();
C
chengduo 已提交
62

63
    // call new kernel
64 65 66 67 68 69 70 71 72 73 74 75
    if (in_var->IsType<pten::SelectedRows>()) {
      pten::ScaleSR<T>(
          static_cast<const typename framework::ConvertToPtenContext<
              DeviceContext>::TYPE&>(dev_ctx),
          in_var->Get<pten::SelectedRows>(), scale, bias, bias_after_scale,
          out_var->GetMutable<pten::SelectedRows>());
    } else {
      pten::ScaleKernel<T>(
          static_cast<const typename framework::ConvertToPtenContext<
              DeviceContext>::TYPE&>(dev_ctx),
          *in, scale, bias, bias_after_scale, out);
    }
Y
Yu Yang 已提交
76 77 78 79 80
  }
};

}  // namespace operators
}  // namespace paddle