scale_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/scale_op.h"
16
#include <string>
17
#include "paddle/fluid/platform/float16.h"
Y
Yu Yang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

Y
Yu Yang 已提交
32 33 34 35 36
namespace paddle {
namespace operators {

class ScaleOp : public framework::OperatorWithKernel {
 public:
37 38 39
  ScaleOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
Y
Yu Yang 已提交
40 41
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

42
  void InferShape(framework::InferShapeContext *ctx) const override {
43 44
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "scale");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "scale");
45 46 47 48 49

    if (ctx->IsRuntime() && ctx->HasInput("ScaleTensor")) {
      auto scale = ctx->Inputs("ScaleTensor");
      PADDLE_ENFORCE_EQ(scale.size(), 1,
                        platform::errors::InvalidArgument(
50 51 52
                            "Input(ScaleTensor) size must be 1, "
                            "but received size is %d.",
                            scale.size()));
53 54
    }

Q
Qiao Longfei 已提交
55 56
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yu Yang 已提交
57
  }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
73 74 75 76
};

class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
77
  void Make() override {
78
    AddInput("X", "(Tensor) Input tensor of scale operator.");
79 80 81 82 83
    AddInput("ScaleTensor",
             "(Tensor) If provided, use this as "
             "scale factor, this has a higher priority than "
             "attr(scale), the shape of this tensor MUST BE 1.")
        .AsDispensable();
84 85
    AddOutput("Out", "(Tensor) Output tensor of scale operator.");
    AddComment(R"DOC(
Y
yi.wu 已提交
86 87
**Scale operator**

S
sneaxiy 已提交
88
Apply scaling and bias addition to the input tensor.
Y
Yu Yang 已提交
89

S
sneaxiy 已提交
90 91 92 93 94 95 96
if bias_after_scale=True:

$$Out = scale*X + bias$$

else:

$$Out = scale*(X + bias)$$
Y
Yu Yang 已提交
97
)DOC");
Y
yi.wu 已提交
98
    AddAttr<float>("scale", "The scaling factor of the scale operator.")
C
caoying03 已提交
99
        .SetDefault(1.0);
S
sneaxiy 已提交
100
    AddAttr<float>("bias", "The bias of the scale operator.").SetDefault(0.0);
S
sneaxiy 已提交
101 102 103 104 105
    AddAttr<bool>(
        "bias_after_scale",
        "Apply bias addition after or before scaling. It is useful for "
        "numeric stability in some circumstances.")
        .SetDefault(true);
106 107 108
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
Y
Yu Yang 已提交
109 110 111
  }
};

112 113
class ScaleOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
114
  void operator()(framework::InferVarTypeContext *ctx) const override {
115
    ctx->SyncTypeAndDataType("X", "Out");
116 117 118
  }
};

H
hong 已提交
119 120
template <typename T>
class ScaleGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
121
 public:
H
hong 已提交
122
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
123

124
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
125
    grad_op->SetType("scale");
H
hong 已提交
126
    grad_op->SetInput("X", this->OutputGrad("Out"));
127 128 129
    if (this->HasInput("ScaleTensor") > 0) {
      grad_op->SetInput("ScaleTensor", this->Input("ScaleTensor"));
    }
H
hong 已提交
130
    grad_op->SetOutput("Out", this->InputGrad("X"));
J
Jiabin Yang 已提交
131
    VLOG(6) << "Finish SetOutput";
H
hong 已提交
132
    grad_op->SetAttr("scale", this->GetAttr("scale"));
J
Jiabin Yang 已提交
133
    VLOG(6) << "Finish Set Attr scale";
S
sneaxiy 已提交
134
    grad_op->SetAttr("bias", 0.0f);
J
Jiabin Yang 已提交
135
    VLOG(6) << "Finish Set Attr bias";
S
sneaxiy 已提交
136
    grad_op->SetAttr("bias_after_scale", true);
J
Jiabin Yang 已提交
137 138 139
    VLOG(6) << "Finish Set Attr bias_after_scale";
    if (grad_op->HasAttr("use_mkldnn")) {
      VLOG(6) << "Finish Check Attr use_mkldnn";
140
      grad_op->SetAttr("use_mkldnn", this->GetAttr("use_mkldnn"));
J
Jiabin Yang 已提交
141 142 143
      VLOG(6) << "Finish Set Attr use_mkldnn";
    }
    VLOG(6) << "Finish Apply";
Y
Yu Yang 已提交
144 145 146
  }
};

147
DECLARE_INPLACE_OP_INFERER(ScaleOpInplaceInferer, {"X", "Out"});
Y
Yu Yang 已提交
148 149 150 151 152
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
153 154 155
REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker,
                  ops::ScaleGradMaker<paddle::framework::OpDesc>,
                  ops::ScaleGradMaker<paddle::imperative::OpBase>,
156
                  ops::ScaleOpVarTypeInference, ops::ScaleOpInplaceInferer);
Q
QI JUN 已提交
157 158 159
REGISTER_OP_CPU_KERNEL(
    scale, ops::ScaleKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, double>,
160 161
    ops::ScaleKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>,
162 163 164
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int16_t>,
Q
QI JUN 已提交
165 166
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int64_t>);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

REGISTER_OP_CUDA_KERNEL(
    scale,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, float>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, double>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   uint8_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, int8_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   int16_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext, int>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   int64_t>,
    paddle::operators::ScaleKernel<paddle::platform::CUDADeviceContext,
                                   paddle::platform::float16>);