allocator_facade.cc 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include <shared_mutex>
30
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
31
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
33
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
34
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/device_context.h"
37 38

#ifdef PADDLE_WITH_CUDA
39
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
40
#endif
41

42 43 44 45 46
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
47
#endif
48

49
#ifdef PADDLE_WITH_XPU
50
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
51
#endif
52 53 54 55

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
56

J
jianghaicheng 已提交
57 58 59 60
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
61 62 63 64
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Z
Zeng Jinle 已提交
65
PADDLE_DEFINE_EXPORTED_int64(
66
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
67 68 69
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
70 71 72 73
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
74

75 76 77
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

78 79 80
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
81
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
82 83
                            "Enable StreamSafeCUDAAllocator");

84 85 86 87 88
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory, false,
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

89 90
DECLARE_string(allocator_strategy);

91 92 93 94
namespace paddle {
namespace memory {
namespace allocation {

95 96 97 98 99 100 101 102
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
103
                      DecoratedAllocationPtr underlying_allocation)
F
From00 已提交
104 105 106
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
107 108 109 110 111
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
112
    DecoratedAllocationPtr underlying_allocation_;
113 114 115 116 117 118 119 120 121 122 123 124
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
125
  pten::Allocation* AllocateImpl(size_t size) {
126
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
127 128 129
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
130 131
  }

132
  void FreeImpl(pten::Allocation* allocation) {
133 134 135 136 137 138 139 140 141
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
142 143
class AllocatorFacadePrivate {
 public:
144 145
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

146 147 148 149 150 151
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

152 153 154
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
155 156
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
157 158 159 160 161
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
162
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
163 164 165 166 167 168
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support naive_best_fit strategy"));

169
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
170 171 172
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
173
#endif
174 175 176 177 178
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
179 180 181 182
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
183
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
184 185 186 187 188
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
189
#endif
Z
Zeng Jinle 已提交
190 191
        break;
      }
192 193 194

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
195 196 197
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
        if (FLAGS_use_stream_safe_cuda_allocator) {
198
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
199
               ++dev_id) {
200
            InitStreamSafeCUDAAllocator(platform::CUDAPlace(dev_id), nullptr);
201 202
          }
        } else {
203
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
204 205 206 207 208 209 210
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
211 212 213 214
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
215 216 217 218 219
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
220 221 222 223 224
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
225
#endif
Z
Zeng Jinle 已提交
226 227
        break;
      }
228

229 230
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
231 232 233 234 235
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
236 237 238 239 240
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
241
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
242 243 244 245 246
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support thread_local strategy"));
247

248
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
249 250 251
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
252 253 254 255 256
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
257 258 259 260
#endif
        break;
      }

Z
Zeng Jinle 已提交
261
      default: {
262
        PADDLE_THROW(platform::errors::InvalidArgument(
263
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
264
      }
Y
Yu Yang 已提交
265
    }
Z
Zeng Jinle 已提交
266
    InitZeroSizeAllocators();
267
    InitSystemAllocators();
268 269 270 271 272 273

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
Z
Zeng Jinle 已提交
274 275 276 277
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
278
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
279
            << " " << place << " " << size;
280 281
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
282
                                                          : GetAllocatorMap())
283
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
284
    auto iter = allocators.find(place);
285 286 287
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
288
    return iter->second;
289 290
  }

291 292 293 294
  void* GetBasePtr(const std::shared_ptr<pten::Allocation>& allocation) {
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

295
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
296 297 298 299 300 301 302 303 304 305 306
  bool HasCUDAAllocator(const platform::CUDAPlace& place,
                        const gpuStream_t& stream) {
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

307 308 309
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
310 311 312 313
    {  // shared_lock_guard
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
314 315
        return cuda_allocators_[place][stream];
      } else {
316 317 318 319 320
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
321 322 323
      }
    }

324 325 326 327 328
    {  // unique_lock_guard
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
329
    }
330 331 332 333 334
  }

  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    return static_cast<platform::CUDADeviceContext*>(pool.Get(place))->stream();
335
  }
336

337
  void RecordStream(std::shared_ptr<pten::Allocation> allocation,
338
                    const gpuStream_t& stream) {
339 340 341 342
    if (allocation->size() == 0) {
      return;
    }

343 344 345 346 347 348 349 350 351 352 353
    StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    stream_safe_cuda_allocation->RecordStream(stream);
  }

  const gpuStream_t& GetStream(
354
      const std::shared_ptr<pten::Allocation>& allocation) const {
355 356 357 358 359 360 361 362
    const StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<const StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    return stream_safe_cuda_allocation->GetOwningStream();
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  }

#ifdef PADDLE_WITH_CUDA
  void PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
    PADDLE_ENFORCE_EQ(strategy_, AllocatorStrategy::kAutoGrowth,
                      platform::errors::InvalidArgument(
                          "CUDA Graph is only supported when the "
                          "FLAGS_allocator_strategy=\"auto_growth\", but got "
                          "FLAGS_allocator_strategy=\"%s\"",
                          FLAGS_allocator_strategy));
    auto& allocator = cuda_graph_allocator_map_[id];
    PADDLE_ENFORCE_EQ(
        allocator.get(), nullptr,
        platform::errors::InvalidArgument(
            "The memory pool of the CUDA Graph with ID %d have been prepared.",
            id));
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    for (auto& item : allocator->allocators_) {
      auto& old_allocator = item.second;
      old_allocator = CUDAGraphAllocator::Create(old_allocator);
384
    }
385 386 387 388 389 390 391 392 393 394 395
    VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
  }

  void RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
    auto iter = cuda_graph_allocator_map_.find(id);
    PADDLE_ENFORCE_NE(iter, cuda_graph_allocator_map_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find CUDA Graph with ID = %d", id));
    cuda_graph_allocator_map_.erase(iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
  }
396
#endif
397 398 399 400 401 402 403 404 405
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
406
    pten::Allocation* AllocateImpl(size_t size) override {
407 408
      return new Allocation(nullptr, 0, place_);
    }
409
    void FreeImpl(pten::Allocation* allocation) override { delete allocation; }
410 411 412 413 414 415 416

   private:
    platform::Place place_;
  };

  const AllocatorMap& GetAllocatorMap() {
#ifdef PADDLE_WITH_CUDA
417
    if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
418 419 420 421 422 423
      auto id = platform::CUDAGraph::CapturingID();
      auto iter = cuda_graph_allocator_map_.find(id);
      PADDLE_ENFORCE_NE(
          iter, cuda_graph_allocator_map_.end(),
          platform::errors::PermissionDenied(
              "No memory pool is prepared for CUDA Graph capturing."));
424
      VLOG(10) << "Choose CUDA Graph memory pool to allocate memory";
425 426 427
      return iter->second->allocators_;
    } else {
      return allocators_;
428
    }
429 430
#else
    return allocators_;
431 432 433
#endif
  }

434 435 436
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
437 438
  }

439
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
440 441 442
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
443 444
  }

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
          strategy_, AllocatorStrategy::kAutoGrowth,
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
            "Or you must use the gpu device that supports managed memory."));
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

476 477 478 479 480 481 482
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
483 484 485
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
486 487 488 489 490 491 492 493
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
494
    auto cuda_allocator = CreateCUDAAllocator(p);
495
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
496
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
497 498 499 500 501 502 503
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
504
      PADDLE_ENFORCE_GPU_SUCCESS(
505 506
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

507
      PADDLE_ENFORCE_GPU_SUCCESS(
508 509 510 511 512 513 514 515 516 517 518 519 520
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
521
      auto cuda_allocator = CreateCUDAAllocator(p);
522 523 524 525 526 527
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
528
    auto cuda_allocator = CreateCUDAAllocator(p);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
565 566
  }

567
  // NOTE(Ruibiao): Old single-stream version, will be removed later
568 569
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
570
#if defined(PADDLE_WITH_HIP)
571
    auto cuda_allocator = CreateCUDAAllocator(p);
572 573 574 575 576 577 578 579 580
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
581
      PADDLE_ENFORCE_GPU_SUCCESS(
582 583
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

584
      PADDLE_ENFORCE_GPU_SUCCESS(
585 586 587 588 589 590 591 592 593 594 595 596 597
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
598
      auto cuda_allocator = CreateCUDAAllocator(p);
599 600 601 602 603
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
604
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
636
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
637
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
638 639
#endif
#endif
S
sneaxiy 已提交
640
  }
641 642 643 644 645 646 647

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    const std::shared_ptr<Allocator>& underlying_allocator =
648
        cuda_allocators_[p][stream];
649 650 651 652 653 654 655 656 657 658
    cuda_allocators_[p][stream] = std::make_shared<StreamSafeCUDAAllocator>(
        underlying_allocator, p, stream);
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
659
    std::shared_ptr<Allocator> allocator = cuda_allocators_[p][stream];
660 661 662 663 664 665 666 667 668 669 670 671
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
672
#endif
S
sneaxiy 已提交
673

674 675 676 677 678 679
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
680 681 682 683 684 685
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
686 687 688 689 690 691
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

692 693 694 695
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
696 697 698 699 700

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
701 702
#endif

703 704 705 706 707 708 709 710
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
711
    }
712
#endif
J
jianghaicheng 已提交
713 714 715 716 717 718 719
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
720 721 722
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
723
    int device_count = platform::GetGPUDeviceCount();
724 725
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
726
      system_allocators_[p] = CreateCUDAAllocator(p);
727
    }
F
fwenguang 已提交
728 729 730 731
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
732
      platform::MLUPlace p(i);
F
fwenguang 已提交
733 734
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
735 736
#endif
  }
Z
Zeng Jinle 已提交
737 738

  void InitZeroSizeAllocators() {
739
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
740 741
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
742
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
743
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
744 745 746 747 748
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
749 750 751 752 753 754
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
755 756 757 758 759 760
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
761 762 763 764 765 766
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
767 768 769 770 771 772
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
Z
Zeng Jinle 已提交
773 774 775

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
776 777
    }
  }
Z
Zeng Jinle 已提交
778

779 780 781 782 783
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
784
    }
785
  }
786

787 788 789 790
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
791 792 793 794 795
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
796 797
  }

798
  // NOTE(Ruibiao): Old single-stream version, will be removed later
799
  void WrapCUDARetryAllocator(size_t retry_time) {
800 801 802 803
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
804 805 806 807 808 809 810
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

811 812 813
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
814
  std::shared_timed_mutex cuda_allocator_mutex_;
815 816 817
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<CUDAGraphID, std::unique_ptr<AllocatorFacadePrivate>>
      cuda_graph_allocator_map_;
818
#endif
819 820
#endif
  AllocatorStrategy strategy_;
821
  AllocatorMap allocators_;
822 823
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
824
  bool allow_free_idle_chunk_;
825
};
826 827 828 829
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
830
// Pimpl. Make interface clean.
831
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
832 833 834
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
835 836 837 838 839 840

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

841 842 843 844 845
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
846 847 848 849 850 851 852
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place,
                              /* A non-zero num to choose allocator_ */ 1);
    }
#endif

853
    platform::CUDAPlace cuda_place(place.GetDeviceId());
854
    return m_->GetAllocator(cuda_place, m_->GetDefaultStream(cuda_place));
855 856
  }
#endif
857

858 859 860
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
void* AllocatorFacade::GetBasePtr(
    const std::shared_ptr<pten::Allocation>& allocation) {
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()), true,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
  return m_->GetBasePtr(allocation);
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place, const gpuStream_t& stream) {
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place,
                              /* A non-zero num to choose allocator_ */ 1);
    }
#endif
    return m_->GetAllocator(place, stream, /*create_if_not_found=*/true);
  }
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}
#endif

const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
  return m_->GetAllocator(place, /* zero size */ 0);
}

898
std::shared_ptr<pten::Allocation> AllocatorFacade::AllocShared(
899
    const platform::Place& place, size_t size) {
900
  return std::shared_ptr<pten::Allocation>(Alloc(place, size));
901 902
}

903 904
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
905 906 907
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
908 909 910 911 912 913
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place, size)->Allocate(size);
    }
#endif

914
    platform::CUDAPlace cuda_place(place.GetDeviceId());
915
    return Alloc(cuda_place, size, m_->GetDefaultStream(cuda_place));
916 917
  }
#endif
918

919
  return m_->GetAllocator(place, size)->Allocate(size);
920 921
}

W
Wilber 已提交
922
uint64_t AllocatorFacade::Release(const platform::Place& place) {
923 924 925
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
926 927 928 929 930 931 932 933
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_
          ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
          ->Release(place);
    }
#endif

934
    platform::CUDAPlace cuda_place(place.GetDeviceId());
935
    return Release(cuda_place, m_->GetDefaultStream(cuda_place));
936 937
  }
#endif
W
Wilber 已提交
938
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
939 940 941
      ->Release(place);
}

942
std::shared_ptr<pten::Allocation> AllocatorFacade::AllocShared(
943 944
    const platform::Place& place, size_t size, const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
945 946 947 948
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
949 950 951
          "multi-stream 'AllocaShared' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
952 953 954 955 956 957 958

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
959
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
960
  return std::shared_ptr<pten::Allocation>(Alloc(place, size, s));
961 962 963
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
964 965
}

966
bool AllocatorFacade::InSameStream(
967
    const std::shared_ptr<pten::Allocation>& allocation,
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "multi-stream 'InSameStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

991 992 993
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const gpuStream_t& stream) {
994 995 996 997
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
998 999 1000
          "multi-stream 'Alloc' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
1001 1002 1003 1004 1005 1006 1007 1008

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

1009
  platform::CUDAPlace p(place.GetDeviceId());
1010
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
1011
    return m_->GetAllocator(p, stream, /* create_if_not_found = */ true)
1012 1013
        ->Allocate(size);
  } else {
1014
    return m_->GetAllocator(p, size)->Allocate(size);
1015 1016 1017 1018 1019 1020 1021 1022 1023
  }
}

uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
1024 1025 1026
          "multi-stream 'Release' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
1027 1028 1029 1030 1031 1032 1033 1034

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

1035 1036 1037
  return m_->GetAllocator(place, stream)->Release(place);
}

1038
void AllocatorFacade::RecordStream(std::shared_ptr<pten::Allocation> allocation,
1039 1040 1041 1042 1043
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
1044 1045 1046
          "'RecordStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
1047 1048 1049 1050 1051 1052 1053 1054

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

1055
  m_->RecordStream(allocation, stream);
1056 1057
}

1058
const gpuStream_t& AllocatorFacade::GetStream(
1059
    const std::shared_ptr<pten::Allocation>& allocation) const {
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'GetStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

  return m_->GetStream(allocation);
}

1078 1079 1080 1081 1082 1083 1084 1085 1086
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
  return m_->PrepareMemoryPoolForCUDAGraph(id);
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
  return m_->RemoveMemoryPoolOfCUDAGraph(id);
}
#endif
1087
#endif
1088 1089 1090
}  // namespace allocation
}  // namespace memory
}  // namespace paddle