merge_lod_tensor_op.cc 9.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using LoD = framework::LoD;

class MergeLoDTensorOp : public framework::OperatorBase {
 public:
  MergeLoDTensorOp(const std::string &type,
                   const framework::VariableNameMap &inputs,
                   const framework::VariableNameMap &outputs,
                   const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
30

31 32 33
 protected:
  void RunBase(const framework::Scope &scope,
               const platform::Place &dev_place) const {
D
dzhwinter 已提交
34
    // get device context from pool
Y
Yu Yang 已提交
35 36
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
37

38 39 40 41 42 43 44 45 46
    auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
    auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
    auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>();
    auto &in_false =
        scope.FindVar(Input("InFalse"))->Get<framework::LoDTensor>();
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
    auto level = static_cast<size_t>(Attr<int>("level"));

47 48 49 50
    PADDLE_ENFORCE_EQ(
        in_true.numel() || in_false.numel(), true,
        platform::errors::InvalidArgument(
            "Input(InTrue) or Input(InFalse) should be initialized."));
51

52
    auto &mask_dim = mask.dims();
53 54 55 56 57
    std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
    if (platform::is_cpu_place(mask.place())) {
      cpu_mask->ShareDataWith(mask);
    } else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
58 59
      framework::TensorCopy(mask, platform::CPUPlace(), dev_ctx,
                            cpu_mask.get());
60
#else
61 62 63
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Not supported GPU, Please recompile or reinstall paddle with CUDA "
          "support."));
64 65 66 67
#endif
    }
    auto *mask_data = cpu_mask->data<bool>();

68
    platform::Place place = dev_place;
69
    int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];
Y
Yu Yang 已提交
70
    auto data_type = in_true.IsInitialized() ? in_true.type() : in_false.type();
71 72 73 74 75 76 77 78 79 80 81 82
    int rank;
    framework::DDim in_dims;
    if (in_true.IsInitialized()) {
      rank = in_true.dims().size();
      in_dims = framework::slice_ddim(in_true.dims(), 1, rank);
    } else {
      rank = in_false.dims().size();
      in_dims = framework::slice_ddim(in_false.dims(), 1, rank);
    }

    auto in_dim_vec = framework::vectorize(in_dims);
    in_dim_vec.insert(in_dim_vec.begin(), batch_size);
83

84
    framework::DDim out_dims = framework::make_ddim(in_dim_vec);
85
    out->Resize(out_dims);
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    out->mutable_data(place, data_type);

    auto *out_lod = out->mutable_lod();
    out_lod->clear();
    size_t out_offset = 0;

    // Build LoDTensor `out`

    size_t in_true_idx = 0;
    size_t in_false_idx = 0;
    for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
      const framework::LoDTensor *input = nullptr;
      size_t *in_idx = nullptr;
      if (static_cast<int>(mask_data[i]) == 0) {
        input = &in_false;
        in_idx = &in_false_idx;
      } else {
        input = &in_true;
        in_idx = &in_true_idx;
      }
      auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
          input->lod(), *in_idx, (*in_idx) + 1, 0);
      auto &lod_length = lod_and_offset.first;

      framework::AppendLoD(out_lod, lod_length);

      size_t start_offset = lod_and_offset.second.first;
      size_t end_offset = lod_and_offset.second.second;

116 117 118 119 120
      PADDLE_ENFORCE_GE(end_offset, start_offset,
                        platform::errors::InvalidArgument(
                            "The end offset less than start offset, end offset "
                            "is %d, start offset is %d.",
                            end_offset, start_offset));
121 122 123 124
      size_t len = end_offset - start_offset;
      if (len == 0) {
        continue;
      }
D
dzhwinter 已提交
125
      auto slice = out->Slice(out_offset, out_offset + len);
Y
Yi Wang 已提交
126 127
      framework::TensorCopy(input->Slice(start_offset, end_offset), place,
                            dev_ctx, &slice);
128 129 130 131 132 133 134 135
      out_offset += len;
      (*in_idx) += 1;
    }

    for (size_t i = 0; i < level; i++) {
      out_lod->insert(out_lod->begin(), x.lod()[i]);
    }
  }
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
    RunBase(scope, dev_place);
  }
};

class MergeLoDTensorInferOp : public MergeLoDTensorOp {
 public:
  MergeLoDTensorInferOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : MergeLoDTensorOp(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
    RunBase(scope, dev_place);
    framework::Variable *in_true_var = scope.FindVar(Input("InTrue"));
    framework::Variable *in_false_var = scope.FindVar(Input("InFalse"));
    in_true_var->Clear();
    in_false_var->Clear();
    in_true_var->GetMutable<framework::LoDTensor>();
    in_false_var->GetMutable<framework::LoDTensor>();
  }
163 164 165 166
};

class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
167
  void Make() override {
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    AddInput("X",
             "The input LoDTensor, contains complete lod information to "
             "construct the output");
    AddInput("Mask", "A bool column vector which mask the input");
    AddInput("InTrue", "The True branch to be merged");
    AddInput("InFalse", "The False branch to be merged");
    AddOutput("Out", "The merged output LoDTensor");
    AddAttr<int>("level", "(int) the specific lod level to rank.")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddComment(
        R"DOC(
        Merge True and False branches of LoDTensor into a single Output,
        with a mask at certain lod level. X is used to obtain complete
        lod information. Please refer to SplitLoDTensorOp.)DOC");
  }
};

class MergeLoDTensorInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
189 190 191 192 193 194 195 196 197
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasInput("Mask"), "Input", "Mask",
                   "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasInput("InTrue"), "Input", "InTrue",
                   "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasInput("InFalse"), "Input", "InFalse",
                   "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out",
                   "merge_lod_tensor");
198
    auto mask_dim = context->GetInputDim("Mask");
Z
Zhaolong Xing 已提交
199
    PADDLE_ENFORCE_EQ(mask_dim.size(), 2,
200 201 202 203 204 205 206 207
                      platform::errors::InvalidArgument(
                          "If you are using IfElse OP:"
                          "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                          "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                          "Please ensure that the cond is a 2-D tensor and "
                          "the second dim size of cond is 1. "
                          "But now the cond's shape is [%s].\n",
                          mask_dim));
208
    if (context->IsRuntime() || mask_dim[1] > 0) {
Z
Zhaolong Xing 已提交
209
      PADDLE_ENFORCE_EQ(mask_dim[1], 1,
210 211 212 213 214 215 216 217
                        platform::errors::InvalidArgument(
                            "If you are using IfElse OP:"
                            "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                            "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                            "Please ensure that the cond is a 2-D tensor "
                            "and the second dim size of cond is 1. "
                            "But now the cond's shape is [%s].\n",
                            mask_dim));
218
    }
219 220 221 222 223

    context->SetOutputDim("Out", context->GetInputDim("InTrue"));
  }
};

H
hong 已提交
224 225
template <typename T>
class MergeLoDTensorGradMaker : public framework::SingleGradOpMaker<T> {
226
 public:
H
hong 已提交
227
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
228 229

 protected:
230
  void Apply(GradOpPtr<T> grad_op) const override {
231
    grad_op->SetType("split_lod_tensor");
H
hong 已提交
232 233 234 235 236
    grad_op->SetInput("X", this->OutputGrad("Out"));
    grad_op->SetInput("Mask", this->Input("Mask"));
    grad_op->SetOutput("OutTrue", this->InputGrad("InTrue"));
    grad_op->SetOutput("OutFalse", this->InputGrad("InFalse"));
    grad_op->SetAttrMap(this->Attrs());
237 238 239 240 241 242 243 244
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_lod_tensor, ops::MergeLoDTensorOp,
245 246
                  ops::MergeLoDTensorOpProtoMaker,
                  ops::MergeLoDTensorInferShape,
H
hong 已提交
247 248 249 250 251 252 253
                  ops::MergeLoDTensorGradMaker<paddle::framework::OpDesc>,
                  ops::MergeLoDTensorGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    merge_lod_tensor_infer, ops::MergeLoDTensorInferOp,
    ops::MergeLoDTensorOpProtoMaker, ops::MergeLoDTensorInferShape,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);