test_expand_v2_op.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest
21 22

import paddle
23
import paddle.fluid as fluid
24
import paddle.fluid.layers as layers
25
from paddle.fluid import Program, core, program_guard
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30 31 32 33


# Situation 1: shape is a list(without tensor)
class TestExpandV2OpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
H
hong 已提交
34
        self.python_api = paddle.expand
35 36 37 38 39 40 41 42 43 44 45 46

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'shape': self.shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.shape = [100]
        self.expand_times = [1]

    def test_check_output(self):
H
hong 已提交
47
        self.check_output(check_eager=True)
48 49

    def test_check_grad(self):
H
hong 已提交
50
        self.check_grad(['X'], 'Out', check_eager=True)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.shape = [2, 120]
        self.expand_times = [2, 1]


class TestExpandV2OpRank2(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = [1, 140]
        self.shape = [12, 140]
        self.expand_times = [12, 1]


class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.shape = (2, 10, 5)
        self.expand_times = (1, 1, 1)


class TestExpandV2OpRank4(TestExpandV2OpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.shape = (-1, -1, -1, -1)
        self.expand_times = (1, 1, 1, 1)


# Situation 2: shape is a list(with tensor)
class TestExpandV2OpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()
        expand_shapes_tensor = []
        for index, ele in enumerate(self.expand_shape):
88 89 90
            expand_shapes_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'expand_shapes_tensor': expand_shapes_tensor,
        }
        self.attrs = {"shape": self.infer_expand_shape}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [1]
        self.expand_shape = [100]
        self.infer_expand_shape = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.expand_times = [1, 1]
        self.expand_shape = [12, 14]
        self.infer_expand_shape = [12, -1]


# Situation 3: shape is a tensor
class TestExpandV2OpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'Shape': np.array(self.expand_shape).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.expand_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.expand_times = [2, 1]
        self.expand_shape = [2, 100]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# Situation 4: input x is Integer
class TestExpandV2OpInteger(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {
152
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestExpandV2OpBoolean(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestExpandV2OpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "expand_v2"
        self.inputs = {
180
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
181 182 183 184 185 186 187 188 189 190 191 192
        }
        self.attrs = {'shape': [2, 4, 5]}
        output = np.tile(self.inputs['X'], (1, 1, 1))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestExpandV2Error(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
193 194 195
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
196 197 198 199 200
            shape = [2, 2]
            self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
L
lilong12 已提交
201
            x3.stop_gradient = False
202 203 204 205 206 207 208
            self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)


# Test python API
class TestExpandV2API(unittest.TestCase):
    def test_api(self):
        input = np.random.random([12, 14]).astype("float32")
209 210 211
        x = fluid.layers.data(
            name='x', shape=[12, 14], append_batch_size=False, dtype="float32"
        )
212 213

        positive_2 = fluid.layers.fill_constant([1], "int32", 12)
214 215 216 217 218 219
        expand_shape = fluid.layers.data(
            name="expand_shape",
            shape=[2],
            append_batch_size=False,
            dtype="int32",
        )
220 221 222 223 224 225 226 227

        out_1 = paddle.expand(x, shape=[12, 14])
        out_2 = paddle.expand(x, shape=[positive_2, 14])
        out_3 = paddle.expand(x, shape=expand_shape)

        g0 = fluid.backward.calc_gradient(out_2, x)

        exe = fluid.Executor(place=fluid.CPUPlace())
228 229 230 231 232 233 234 235
        res_1, res_2, res_3 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                "expand_shape": np.array([12, 14]).astype("int32"),
            },
            fetch_list=[out_1, out_2, out_3],
        )
236 237 238 239 240
        assert np.array_equal(res_1, np.tile(input, (1, 1)))
        assert np.array_equal(res_2, np.tile(input, (1, 1)))
        assert np.array_equal(res_3, np.tile(input, (1, 1)))


241 242 243 244 245 246
class TestExpandInferShape(unittest.TestCase):
    def test_shape_with_var(self):
        with program_guard(Program(), Program()):
            x = paddle.static.data(shape=[-1, 1, 3], name='x')
            fake_var = paddle.randn([2, 3])
            target_shape = [
247 248 249
                -1,
                paddle.shape(fake_var)[0],
                paddle.shape(fake_var)[1],
250 251 252 253 254
            ]
            out = paddle.expand(x, shape=target_shape)
            self.assertListEqual(list(out.shape), [-1, -1, -1])


255
# Test python Dygraph API
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class TestExpandV2DygraphAPI(unittest.TestCase):
    def test_expand_times_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(1)
                a = paddle.rand([2, 5])
                egr_expand_1 = paddle.expand(a, shape=[2, 5])
                np_array = np.array([2, 5])
                egr_expand_2 = paddle.expand(a, shape=np_array)

            paddle.seed(1)
            a = paddle.rand([2, 5])
            expand_1 = paddle.expand(a, shape=[2, 5])
            np_array = np.array([2, 5])
            expand_2 = paddle.expand(a, shape=np_array)

272 273 274
            np.testing.assert_array_equal(
                egr_expand_1.numpy(), egr_expand_2.numpy()
            )
275
            np.testing.assert_array_equal(expand_1.numpy(), expand_2.numpy())
276 277 278
            np.testing.assert_array_equal(
                expand_1.numpy(), egr_expand_1.numpy()
            )
279 280


281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class TestExpandDoubleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

296 297 298
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
299
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
300 301 302
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandTripleGradCheck(unittest.TestCase):
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [2, 3])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.expand(data, [2, 3])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

328 329 330
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
331
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
332 333 334
        gradient_checker.triple_grad_check_for_dygraph(
            self.expand_wrapper, [data], out, x_init=[data_arr], place=place
        )
335 336 337 338 339 340 341 342 343 344

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


345
if __name__ == "__main__":
H
hong 已提交
346
    paddle.enable_static()
347
    unittest.main()