prepared_operator.cc 29.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18
#include "paddle/fluid/framework/data_type_transform.h"
19
#include "paddle/fluid/framework/details/nan_inf_utils.h"
20
#include "paddle/fluid/imperative/infer_shape_context.h"
21
#include "paddle/fluid/imperative/tracer.h"
22
#include "paddle/phi/common/int_array.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
25
#ifdef PADDLE_WITH_XPU
26
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
Q
QingshuChen 已提交
27
#endif
L
Liu-xiandong 已提交
28
#include "paddle/fluid/framework/library_type.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
C
chenjian 已提交
30
#include "paddle/fluid/platform/profiler/event_tracing.h"
C
chenjian 已提交
31
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
32

33
DECLARE_bool(check_nan_inf);
34
DECLARE_bool(benchmark);
F
Feng Xing 已提交
35
DECLARE_bool(run_kp_kernel);
36

J
Jiabin Yang 已提交
37 38 39
namespace paddle {
namespace imperative {

40
static const phi::Kernel empty_kernel;
41 42
static const framework::RuntimeContext empty_ctx({}, {});
static const framework::Scope empty_scope;
43

44 45 46 47 48 49 50
const phi::KernelFactory& PreparedOp::phi_kernel_factory =
    phi::KernelFactory::Instance();
const phi::OpUtilsMap& PreparedOp::phi_op_utils_map =
    phi::OpUtilsMap::Instance();
const phi::DefaultKernelSignatureMap& PreparedOp::default_phi_kernel_sig_map =
    phi::DefaultKernelSignatureMap::Instance();

51 52 53 54 55 56 57 58 59 60
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
61 62 63
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
64 65
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
J
Jiabin Yang 已提交
66 67 68 69 70
  } else {
    return nullptr;
  }
}

71
template <typename VarType>
J
Jiabin Yang 已提交
72
void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
89
      if (tensor && tensor->IsInitialized()) {
90 91 92 93 94
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
95 96
        framework::TransComplexToReal(
            var->ForwardDataType(), var->DataType(), *tensor, &out);
97
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
98 99 100 101 102
      }
    }
  }
}

J
Jiabin Yang 已提交
103
template <>
104 105
void HandleComplexGradToRealGrad<egr::EagerVariable>(
    const NameVarMap<egr::EagerVariable>& outs) {
J
Jiabin Yang 已提交
106 107 108
  // TODO(jiabin): Support Complex here.
}

109 110 111 112 113
void TestHandleComplexGradToRealGradEager(
    const NameVarMap<egr::EagerVariable>& outs) {
  HandleComplexGradToRealGrad<egr::EagerVariable>(outs);
}

J
Jiabin Yang 已提交
114 115
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
116
                       const framework::OpKernelType& kernel_type,
117
                       const framework::OperatorWithKernel::OpKernelFunc& func,
118 119
                       const phi::ArgumentMappingFn* arg_map_fn,
                       const phi::KernelSignature* default_kernel_signature,
120
                       platform::DeviceContext* dev_ctx)
121 122 123 124
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
125
      dev_ctx_(dev_ctx),
126 127 128
      arg_map_fn_(arg_map_fn),
      default_kernel_signature_(default_kernel_signature),
      phi_kernel_(empty_kernel) {}
129

130 131 132
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
133 134 135 136
                       const phi::ArgumentMappingFn* arg_map_fn,
                       const phi::KernelSignature* default_kernel_signature,
                       phi::KernelSignature&& kernel_signature,
                       const phi::Kernel& phi_kernel,
137 138 139 140 141 142
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
143
      run_phi_kernel_(true),
144 145 146 147
      arg_map_fn_(arg_map_fn),
      default_kernel_signature_(default_kernel_signature),
      kernel_signature_(std::move(kernel_signature)),
      phi_kernel_(phi_kernel) {}
148

149
template <typename VarType>
150
PreparedOp PrepareImpl(
151 152 153 154
    const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs,
    const framework::OperatorWithKernel& op,
    const platform::Place& place,
155 156 157 158 159
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
    const phi::KernelFactory& phi_kernel_factory,
    const phi::OpUtilsMap& phi_op_utils_map,
    const phi::DefaultKernelSignatureMap& default_phi_kernel_sig_map) {
160
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
161
  auto* dev_ctx = pool.Get(place);
162

163 164 165 166 167 168
#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
169 170 171 172
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
173 174
  }
#endif
175 176
  // NOTE(zhiqiu): for kernels on given device, for example NPU, the order to
  // choose is:
177
  // phi npu kernel > fluid npu kernel > phi cpu kernel > fluid cpu kernel
J
Jiabin Yang 已提交
178

179
  // 1. get expected kernel key
180
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
181
      op, empty_scope, *dev_ctx, empty_ctx, ins, outs, attrs, default_attrs);
182
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
183

184 185
  const phi::KernelSignature* default_kernel_signature = nullptr;
  phi::KernelSignature kernel_signature;
186 187
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
L
Liu-xiandong 已提交
188
#if defined(PADDLE_WITH_XPU)
189 190 191 192 193
  bool is_xpu_unsupport =
      paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
          !paddle::platform::is_xpu_support_op(op.Type(),
                                               expected_kernel_key) ||
      paddle::platform::is_in_xpu_black_list(op.Type());
L
Liu-xiandong 已提交
194

195
#endif
196

197 198
  bool has_phi_kernel = false;

199 200
  const auto* arg_map_fn = phi_op_utils_map.GetArgumentMappingFn(op.Type());

201 202
  if (arg_map_fn) {
    has_phi_kernel = true;
203
    kernel_signature = (*arg_map_fn)(
204 205
        framework::ExecutionArgumentMappingContext(dygraph_exe_ctx));
  } else {
206
    default_kernel_signature =
207
        default_phi_kernel_sig_map.GetNullable(op.Type());
208
    if (default_kernel_signature) {
209
      has_phi_kernel = true;
210
      kernel_signature = *default_kernel_signature;
211 212 213
    }
  }
  if (has_phi_kernel) {
214
    VLOG(6) << kernel_signature;
215
    phi_kernel_name = kernel_signature.name;
216 217 218
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
L
Liu-xiandong 已提交
219
#ifdef PADDLE_WITH_XPU_KP
220
    bool is_kp_support = false;
L
Liu-xiandong 已提交
221 222
    if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
      bool use_xpu_kp_kernel_rt =
223 224 225 226
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(op.Type(),
                                                 expected_kernel_key) &&
          (!paddle::platform::is_in_xpu_black_list(op.Type()));
L
Liu-xiandong 已提交
227 228 229 230 231 232 233 234 235 236
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_in_xpu_kpwhite_list(op.Type());
      if (use_xpu_kp_kernel_rt) {
        VLOG(3) << "phi xpu_kp using rt mode ";
      }
      if (use_xpu_kp_kernel_debug) {
        VLOG(3) << "phi xpu_kp using debug mode ";
      }
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
237
      is_kp_support = is_xpu_kp_support;
L
Liu-xiandong 已提交
238
      if (is_xpu_kp_support) {
239 240
        auto expected_kernel_key_library_type =
            expected_kernel_key.library_type_;
L
Liu-xiandong 已提交
241
        expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP;
242
        VLOG(3) << "modifing XPU KP kernel: " << phi_kernel_name
L
Liu-xiandong 已提交
243
                << ", using_kernel_key:" << expected_kernel_key;
244

245
        phi::KernelKey try_phi_kernel_key =
246
            TransOpKernelTypeToPhiKernelKey(expected_kernel_key);
247 248
        if (!phi_kernel_factory.HasKernel(phi_kernel_name,
                                          try_phi_kernel_key)) {
249
          expected_kernel_key.library_type_ = expected_kernel_key_library_type;
250
          VLOG(3) << "modify XPU KP kernel: " << phi_kernel_name
251 252
                  << " in dynamic graph is failed " << expected_kernel_key;
        } else {
253
          VLOG(3) << "modify XPU KP kernel: " << phi_kernel_name
254
                  << " in dynamic graph is succeed " << expected_kernel_key;
255
        }
L
Liu-xiandong 已提交
256 257 258
      }
    }
#endif
259

260
    phi_kernel_key = TransOpKernelTypeToPhiKernelKey(expected_kernel_key);
261
    auto& phi_kernel =
262
        phi_kernel_factory.SelectKernel(phi_kernel_name, phi_kernel_key);
263

264
    if (phi_kernel.IsValid()
L
Liu-xiandong 已提交
265
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
266
        && !is_xpu_unsupport
267 268 269
#endif
#if defined(PADDLE_WITH_XPU_KP)
        && is_kp_support
270
#endif
271
    ) {
272 273
      VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << phi_kernel_name
              << " | kernel key: " << phi_kernel_key
274
              << " | kernel: " << phi_kernel;
275

F
From00 已提交
276 277
      if (expected_kernel_key.place_ != place) {
        dev_ctx = pool.Get(expected_kernel_key.place_);
W
Wilber 已提交
278
      }
F
From00 已提交
279

280 281 282 283 284 285 286 287
      return PreparedOp(op,
                        empty_ctx,
                        expected_kernel_key,
                        arg_map_fn,
                        default_kernel_signature,
                        std::move(kernel_signature),
                        phi_kernel,
                        dev_ctx);
288
    } else {
289
      VLOG(6) << "Dynamic mode ChoosePhiKernel - kernel `" << phi_kernel_name
290 291 292 293
              << "` not found.";
    }
  }

294
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
295 296
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
297

298 299 300
// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
301 302 303 304 305 306 307 308 309 310 311 312 313 314
#ifdef PADDLE_WITH_XPU_KP
  bool use_xpu_kp_kernel_rt =
      paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
      FLAGS_run_kp_kernel &&
      paddle::platform::is_xpu_kp_support_op(op.Type(), expected_kernel_key);
  bool use_xpu_kp_kernel_debug =
      paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
      paddle::platform::is_in_xpu_kpwhite_list(op.Type());
  bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
  if (is_xpu_kp_support) {
    expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP;
  }
#endif

315 316 317
  if ((kernels_iter == all_op_kernels.end() ||
       kernels_iter->second.find(expected_kernel_key) ==
           kernels_iter->second.end())
L
Liu-xiandong 已提交
318
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
319
      || is_xpu_unsupport
320
#endif
321 322 323
#if defined(PADDLE_WITH_XPU_KP)
      || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
324
  ) {
325
    if (has_phi_kernel) {
326 327 328 329 330 331 332 333
      auto phi_cpu_kernel_key =
          FallBackToCpu(expected_kernel_key, phi_kernel_key, op);
      auto& phi_cpu_kernel =
          phi_kernel_factory.SelectKernel(phi_kernel_name, phi_cpu_kernel_key);
      if (phi_cpu_kernel.IsValid()) {
        VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << phi_kernel_name
                << " | kernel key: " << phi_cpu_kernel_key
                << " | kernel: " << phi_cpu_kernel;
334
        auto* cpu_ctx = pool.Get(paddle::platform::CPUPlace());
335
        return PreparedOp(
336 337
            op,
            empty_ctx,
338
            framework::TransPhiKernelKeyToOpKernelType(phi_cpu_kernel_key),
339 340 341
            arg_map_fn,
            default_kernel_signature,
            std::move(kernel_signature),
342
            phi_cpu_kernel,
343
            cpu_ctx);
344 345 346 347
      }
    }
  }

348
  PADDLE_ENFORCE_NE(
349 350
      kernels_iter,
      all_op_kernels.end(),
351 352 353
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
354

J
Jiabin Yang 已提交
355 356
  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
357

358
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
359
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
360
      (kernel_iter == kernels.end() || is_xpu_unsupport)) {
361
    VLOG(3) << "fluid missing XPU kernel: " << op.Type()
362 363
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
364 365 366
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
367
#endif
L
Liu-xiandong 已提交
368 369

#ifdef PADDLE_WITH_XPU_KP
370 371
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    if (use_xpu_kp_kernel_rt) {
372
      VLOG(3) << "fluid xpu_kp using rt mode ";
373 374
    }
    if (use_xpu_kp_kernel_debug) {
375
      VLOG(3) << "fluid xpu_kp using debug mode ";
376 377 378 379
    }
    if (is_xpu_kp_support) {
      expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
380
      VLOG(3) << "using fluid XPU KP kernel: " << op.Type()
381 382 383 384
              << ", using_kernel_key:" << expected_kernel_key;
    }
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
385
      VLOG(3) << "fluid missing XPU kernel: " << op.Type()
386 387 388 389 390
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
391 392 393
  }
#endif

394 395
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
396
      paddle::platform::is_npu_place(expected_kernel_key.place_)) {
397 398 399
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
400
    expected_kernel_key.place_ = platform::CPUPlace();
401 402 403 404 405 406 407 408 409 410
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      paddle::platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
411 412
    kernel_iter = kernels.find(expected_kernel_key);
  }
413 414 415
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
416
      paddle::platform::is_mlu_place(expected_kernel_key.place_)) {
417 418 419 420 421 422
    VLOG(3) << "missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
423 424 425 426 427 428 429 430 431 432
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      paddle::platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << place.GetDeviceType() << " kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
433
#endif
434 435
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
436 437 438 439 440 441
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator %s does not have kernel for %s.",
                                 op.Type(),
                                 KernelTypeToString(expected_kernel_key)));
442

443 444 445 446
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

447 448 449 450 451 452 453
  return PreparedOp(op,
                    empty_ctx,
                    expected_kernel_key,
                    kernel_iter->second,
                    arg_map_fn,
                    default_kernel_signature,
                    dev_ctx);
454 455
}

456 457 458 459
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
460
                               const framework::AttributeMap& attrs,
461
                               const framework::AttributeMap& default_attrs) {
462 463 464 465 466 467 468 469
  return PrepareImpl<VarBase>(ins,
                              outs,
                              op,
                              place,
                              attrs,
                              default_attrs,
                              phi_kernel_factory,
                              phi_op_utils_map,
470
                              default_phi_kernel_sig_map);
471 472 473 474 475 476
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
477
                               const framework::AttributeMap& attrs,
478
                               const framework::AttributeMap& default_attrs) {
479 480 481 482 483 484 485 486 487
  return PrepareImpl<VariableWrapper>(ins,
                                      outs,
                                      op,
                                      place,
                                      attrs,
                                      default_attrs,
                                      phi_kernel_factory,
                                      phi_op_utils_map,
                                      default_phi_kernel_sig_map);
488 489
}

490 491
PreparedOp PreparedOp::Prepare(const NameVarMap<egr::EagerVariable>& ins,
                               const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
492 493 494 495
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
496 497 498 499 500 501 502 503 504
  return PrepareImpl<egr::EagerVariable>(ins,
                                         outs,
                                         op,
                                         place,
                                         attrs,
                                         default_attrs,
                                         phi_kernel_factory,
                                         phi_op_utils_map,
                                         default_phi_kernel_sig_map);
J
Jiabin Yang 已提交
505
}
506 507
template <typename VarType>
static void PreparedOpRunImpl(
508 509
    const framework::OperatorBase& op,
    const framework::RuntimeContext& ctx,
510
    const framework::OpKernelType& kernel_type,
511
    const framework::OperatorWithKernel::OpKernelFunc& func,
512 513
    const phi::ArgumentMappingFn* arg_map_fn,
    const phi::KernelSignature* default_kernel_signature,
514 515 516 517
    platform::DeviceContext* dev_ctx,
    const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
518
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
519
  // TODO(zjl): remove scope in dygraph
H
hong 已提交
520

521
  {
522
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
523
                                       platform::TracerEventType::OperatorInner,
524 525 526 527 528 529 530 531 532 533
                                       1,
                                       platform::EventRole::kInnerOp);
    DygraphInferShapeContext<VarType> infer_shape_ctx(&ins,
                                                      &outs,
                                                      &attrs,
                                                      &default_attrs,
                                                      op.Type(),
                                                      &kernel_type,
                                                      arg_map_fn,
                                                      default_kernel_signature);
534
    op.Info().infer_shape_(&infer_shape_ctx);
C
chenjian 已提交
535 536 537
    record_event.End();
    platform::RecordOpInfoSupplement(
        op.Type(), op.Attrs(), infer_shape_ctx, ctx);
538 539 540
  }

  {
541
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
542
                                       platform::TracerEventType::OperatorInner,
543 544
                                       1,
                                       platform::EventRole::kInnerOp);
H
hong 已提交
545

546 547
    func(DygraphExecutionContext<VarType>(
        op, empty_scope, *dev_ctx, ctx, ins, outs, attrs, default_attrs));
548
  }
549

550 551 552 553 554
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

L
Leo Chen 已提交
555 556 557 558 559 560 561 562
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
578
}
H
hong 已提交
579

580 581 582
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
583
    const framework::OpKernelType& kernel_type,
584 585
    const phi::ArgumentMappingFn* arg_map_fn,
    const phi::KernelSignature* default_kernel_signature,
586 587 588 589 590 591
    const phi::KernelSignature& kernel_signature,
    const phi::Kernel& phi_kernel,
    platform::DeviceContext* dev_ctx,
    const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
592
    const framework::AttributeMap& default_attrs) {
593
  {
594
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
595
                                       platform::TracerEventType::OperatorInner,
596 597 598 599 600 601 602 603 604 605
                                       1,
                                       platform::EventRole::kInnerOp);
    DygraphInferShapeContext<VarType> infer_shape_ctx(&ins,
                                                      &outs,
                                                      &attrs,
                                                      &default_attrs,
                                                      op.Type(),
                                                      &kernel_type,
                                                      arg_map_fn,
                                                      default_kernel_signature);
606
    op.Info().infer_shape_(&infer_shape_ctx);
C
chenjian 已提交
607 608 609
    record_event.End();
    platform::RecordOpInfoSupplement(
        op.Type(), op.Attrs(), infer_shape_ctx, kernel_signature);
610 611 612
  }

  {
613
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
614
                                       platform::TracerEventType::OperatorInner,
615 616
                                       1,
                                       platform::EventRole::kInnerOp);
617

618
    PreparePhiData<VarType>(phi_kernel, kernel_signature, ins);
619

620
    phi::KernelContext phi_kernel_context;
621 622 623 624 625 626 627
    BuildDygraphPhiKernelContext<VarType>(kernel_signature,
                                          phi_kernel,
                                          ins,
                                          outs,
                                          attrs,
                                          default_attrs,
                                          dev_ctx,
628
                                          &phi_kernel_context);
629

630
    phi_kernel(&phi_kernel_context);
631
  }
632

633 634 635 636 637
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

638 639
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
640 641
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
642 643 644 645
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

646 647 648
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
649 650
}

651 652
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
653 654
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
655
  if (run_phi_kernel_) {
656 657 658 659 660 661 662 663 664 665
    PreparedOpRunPtImpl<VarBase>(op_,
                                 kernel_type_,
                                 arg_map_fn_,
                                 default_kernel_signature_,
                                 kernel_signature_,
                                 phi_kernel_,
                                 dev_ctx_,
                                 ins,
                                 outs,
                                 attrs,
666
                                 default_attrs);
667
  } else {
668 669 670 671 672 673 674 675 676 677 678
    PreparedOpRunImpl<VarBase>(op_,
                               ctx_,
                               kernel_type_,
                               func_,
                               arg_map_fn_,
                               default_kernel_signature_,
                               dev_ctx_,
                               ins,
                               outs,
                               attrs,
                               default_attrs);
679
  }
680
}
H
hong 已提交
681

682 683
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
684 685
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
686
  if (run_phi_kernel_) {
687 688 689 690 691 692 693 694 695 696 697
    PreparedOpRunPtImpl<VariableWrapper>(op_,
                                         kernel_type_,
                                         arg_map_fn_,
                                         default_kernel_signature_,
                                         kernel_signature_,
                                         phi_kernel_,
                                         dev_ctx_,
                                         ins,
                                         outs,
                                         attrs,
                                         default_attrs);
698
  } else {
699 700 701 702 703 704 705 706 707 708 709
    PreparedOpRunImpl<VariableWrapper>(op_,
                                       ctx_,
                                       kernel_type_,
                                       func_,
                                       arg_map_fn_,
                                       default_kernel_signature_,
                                       dev_ctx_,
                                       ins,
                                       outs,
                                       attrs,
                                       default_attrs);
710
  }
J
Jiabin Yang 已提交
711 712
}

713 714
void PreparedOp::Run(const NameVarMap<egr::EagerVariable>& ins,
                     const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
715 716
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
717
  if (run_phi_kernel_) {
718 719 720 721 722 723 724 725 726 727 728
    PreparedOpRunPtImpl<egr::EagerVariable>(op_,
                                            kernel_type_,
                                            arg_map_fn_,
                                            default_kernel_signature_,
                                            kernel_signature_,
                                            phi_kernel_,
                                            dev_ctx_,
                                            ins,
                                            outs,
                                            attrs,
                                            default_attrs);
J
Jiabin Yang 已提交
729
  } else {
730 731 732 733 734 735 736 737 738 739 740
    PreparedOpRunImpl<egr::EagerVariable>(op_,
                                          ctx_,
                                          kernel_type_,
                                          func_,
                                          arg_map_fn_,
                                          default_kernel_signature_,
                                          dev_ctx_,
                                          ins,
                                          outs,
                                          attrs,
                                          default_attrs);
J
Jiabin Yang 已提交
741 742 743
  }
}

J
Jiabin Yang 已提交
744 745
}  // namespace imperative
}  // namespace paddle