detection.py 30.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18
from layer_function_generator import generate_layer_fn
19
from layer_function_generator import autodoc
20
from ..layer_helper import LayerHelper
21 22 23
import tensor
import ops
import nn
C
chengduoZH 已提交
24
import math
25

C
chengduoZH 已提交
26 27
__all__ = [
    'multi_box_head',
28 29 30 31
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
32
    'detection_map',
C
chengduoZH 已提交
33
]
34

35 36 37
__auto__ = [
    'iou_similarity',
    'box_coder',
C
chengduoZH 已提交
38
]
39

40 41 42 43 44
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

45 46 47 48 49 50 51 52 53 54 55 56 57 58

def detection_output(scores,
                     loc,
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
    **Detection Output Layer**

C
chengduoZH 已提交
59
    This layer applies the NMS to the output of network and computes the
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    predict bounding box location. The output's shape of this layer could
    be zero if there is no valid bounding box.

    Args:
        scores(Variable): A 3-D Tensor with shape [N, C, M] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
        The detected bounding boxes which are a Tensor.

    Examples:
        .. code-block:: python

        pb = layers.data(name='prior_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        pbv = layers.data(name='prior_box_var', shape=[10, 4],
                          append_batch_size=False, dtype='float32')
        loc = layers.data(name='target_box', shape=[21, 4],
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 21, 10],
                          append_batch_size=False, dtype='float32')
        nmsed_outs = fluid.layers.detection_output(scores=scores,
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """

    helper = LayerHelper("detection_output", **locals())
114 115 116 117 118
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
119

120
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
121 122 123 124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
    return nmsed_outs
C
chengduoZH 已提交
135 136


137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
@autodoc()
def detection_map(detect_res,
                  label,
                  pos_count=None,
                  true_pos=None,
                  false_pos=None,
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
                  ap_type='integral'):
    helper = LayerHelper("detection_map", **locals())

    map_out = helper.create_tmp_variable(dtype='float32')
    accum_pos_count_out = helper.create_tmp_variable(dtype='int32')
    accum_true_pos_out = helper.create_tmp_variable(dtype='float32')
    accum_false_pos_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
            'ap_type': ap_type
        })
    return map_out, accum_pos_count_out, accum_true_pos_out, accum_false_pos_out


175 176 177 178 179 180 181 182 183 184 185
def bipartite_match(dist_matrix, name=None):
    """
    **Bipartite matchint operator**

    This operator is a greedy bipartite matching algorithm, which is used to
    obtain the matching with the maximum distance based on the input
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
    find the matched column for each row, also can find the matched row for
    each column. And this operator only calculate matched indices from column
    to row. For each instance, the number of matched indices is the number of
    of columns of the input ditance matrix.
C
chengduoZH 已提交
186

187 188 189 190 191
    There are two outputs to save matched indices and distance.
    A simple description, this algothrim matched the best (maximum distance)
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
            dist_matirx[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better macthing the pairs are. Please note,
            This tensor can contain LoD information to represent a batch of
            inputs. One instance of this batch can contain different numbers of
            entities.
    Returns:
        match_indices(Variable): A 2-D Tensor with shape [N, M] in int type.
            N is the batch size. If match_indices[i][j] is -1, it
            means B[j] does not match any entity in i-th instance.
            Otherwise, it means B[j] is matched to row
            match_indices[i][j] in i-th instance. The row number of
            i-th instance is saved in match_indices[i][j].
        match_distance(Variable): A 2-D Tensor with shape [N, M] in float type.
            N is batch size. If match_indices[i][j] is -1,
            match_distance[i][j] is also -1.0. Otherwise, assumed
            match_distance[i][j] = d, and the row offsets of each instance
            are called LoD. Then match_distance[i][j] = dist_matrix[d+LoD[i]][j].
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    **Target assigner operator**

    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
245

246 247 248 249 250
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
251

252
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
253

254
    If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
255

256 257
        out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
        out_weight[i][j] = 1.
C
chengduoZH 已提交
258 259 260

    Otherwise,

261 262
        out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][j] = 0.
C
chengduoZH 已提交
263

264
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
265

266 267
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
C
chengduoZH 已提交
268

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
       out (Variable): The output is a 3D Tensor with shape [N, P, K],
           N and P is the same as they are in `neg_indices`, K is the
           same as it in input of X. If `match_indices[i][j]`.
       out_weight (Variable): The weight for output with the shape of [N, P, 1].
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
             sample_size=None):
    """
    **Multi-box loss layer for object dection algorithm of SSD**

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

    1. Find matched boundding box by bipartite matching algorithm.
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
      1.2 Compute matched boundding box by bipartite matching algorithm.
    2. Compute confidence for mining hard examples
      2.1. Get the target label based on matched indices.
      2.2. Compute confidence loss.
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
    4. Assign classification and regression targets
      4.1. Encoded bbox according to the prior boxes.
      4.2. Assign regression targets.
      4.3. Assign classification targets.
    5. Compute the overall objective loss.
      5.1 Compute confidence loss.
      5.1 Compute localization loss.
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
            boxes, used only when mining_type is max_negative, 3.0 by defalut.
        neg_overlap (float): The negative overlap upper bound for the unmatched
            predictions. Use only when mining_type is max_negative,
            0.5 by default.
        sample_size (int): The max sample size of negative box, used only when
            mining_type is hard_example.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
            be 'bipartite' or 'per_prediction'.
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.

    Returns:
        Variable: The weighted sum of the localization loss and confidence loss,
            with shape [N * Np, 1], N and Np are the same as they are
            in `location`.

    Raises:
        ValueError: If mining_type is 'hard_example', now only support
            mining type of `max_negative`.

    Examples:
        .. code-block:: python

            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape

    def __reshape_to_2d(var):
        return ops.reshape(x=var, shape=[-1, var.shape[-1]])

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
    matched_indices, matched_dist = bipartite_match(iou)

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
    gt_label = ops.reshape(x=gt_label, shape=gt_label.shape + (1, ))
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)

    # 3. Mining hard examples
    conf_loss = ops.reshape(x=conf_loss, shape=(num, num_prior))
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
            'neg_dist_threshold': neg_pos_ratio,
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
    return loss
C
chengduoZH 已提交
498 499


C
chengduoZH 已提交
500
def multi_box_head(inputs,
C
chengduoZH 已提交
501 502
                   image,
                   base_size,
C
chengduoZH 已提交
503
                   num_classes,
C
chengduoZH 已提交
504 505 506
                   aspect_ratios,
                   min_ratio,
                   max_ratio,
C
chengduoZH 已提交
507 508
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
509 510 511 512 513
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
                   variance=[0.1, 0.1, 0.1, 0.1],
C
chengduoZH 已提交
514
                   flip=False,
C
chengduoZH 已提交
515
                   clip=False,
C
chengduoZH 已提交
516
                   kernel_size=1,
C
chengduoZH 已提交
517
                   pad=0,
C
chengduoZH 已提交
518
                   stride=1,
C
chengduoZH 已提交
519
                   name=None):
C
chengduoZH 已提交
520
    """
C
chengduoZH 已提交
521
    **Prior_boxes**
C
chengduoZH 已提交
522

C
chengduoZH 已提交
523 524 525 526
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
    section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
527 528

    Args:
529
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
530
            of all Variables is NCHW.
C
chengduoZH 已提交
531 532
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
533 534
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.1, 0.1].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
C
chengduoZH 已提交
564 565

    Returns:
566 567 568 569 570 571
        mbox_loc(list): The predicted boxes' location of the inputs.
             The layout of each element is [N, H, W, Priors]. Priors
             is the number of predicted boxof each position of each input.
        mbox_conf(list): The predicted boxes' confidence of the inputs.
             The layout of each element is [N, H, W, Priors]. Priors
             is the number of predicted box of each position of each input.
C
chengduoZH 已提交
572 573 574 575 576 577 578
        boxes(Variable): the output prior boxes of PriorBox.
             The layout is [num_priors, 4]. num_priors is the total
             box count of each position of inputs.
        Variances(Variable): the expanded variances of PriorBox.
             The layout is [num_priors, 4]. num_priors is the total
             box count of each position of inputs

C
chengduoZH 已提交
579 580 581

    Examples:
        .. code-block:: python
C
chengduoZH 已提交
582 583 584 585 586 587 588 589 590 591 592
          mbox_locs, mbox_confs, box, var = layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
593 594
    """

C
chengduoZH 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    def _prior_box_(input,
                    image,
                    min_sizes,
                    max_sizes,
                    aspect_ratios,
                    variance,
                    flip=False,
                    clip=False,
                    step_w=0.0,
                    step_h=0.0,
                    offset=0.5,
                    name=None):
        helper = LayerHelper("prior_box", **locals())
        dtype = helper.input_dtype()

        box = helper.create_tmp_variable(dtype)
        var = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input,
                    "Image": image},
            outputs={"Boxes": box,
                     "Variances": var},
            attrs={
                'min_sizes': min_sizes,
                'max_sizes': max_sizes,
                'aspect_ratios': aspect_ratios,
                'variances': variance,
                'flip': flip,
                'clip': clip,
                'step_w': step_w,
                'step_h': step_h,
                'offset': offset
            })
        return box, var

    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError("The axis should be smaller than "
                             "the arity of input and bigger than 0.")
        new_shape = [
            -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
        ]
        out = ops.reshape(x=input, shape=new_shape)
        return out
640

641 642
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
643

C
chengduoZH 已提交
644 645 646 647
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

648 649
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
650

C
chengduoZH 已提交
651 652 653 654 655 656
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
    else:
C
chengduoZH 已提交
657 658 659 660 661 662 663 664 665
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
689 690
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
691 692
    box_results = []
    var_results = []
C
chengduoZH 已提交
693 694
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
695 696
        max_size = max_sizes[i]

697
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
698
            min_size = [min_size]
C
chengduoZH 已提交
699 700 701 702
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
        if not (len(max_size) == len(min_size)):
            raise ValueError(
703
                'the length of max_size and min_size should be equal.')
C
chengduoZH 已提交
704 705 706 707

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
708
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
709 710
                aspect_ratio = [aspect_ratio]

C
chengduoZH 已提交
711 712 713 714 715 716 717 718 719
        box, var = _prior_box_(input, image, min_size, max_size, aspect_ratio,
                               variance, flip, clip, step_w[i]
                               if step_w else 0.0, step_h[i]
                               if step_w else 0.0, offset)

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
720

C
chengduoZH 已提交
721 722
        # get box_loc
        num_loc_output = num_boxes * num_classes * 4
723
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
724
            input=input,
725 726 727 728 729
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

730
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
C
chengduoZH 已提交
731 732
        mbox_locs.append(mbox_loc)

C
chengduoZH 已提交
733
        # get conf_loc
C
chengduoZH 已提交
734
        num_conf_output = num_boxes * num_classes
735
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
736
            input=input,
737 738 739 740
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
741
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
C
chengduoZH 已提交
742 743
        mbox_confs.append(conf_loc)

C
chengduoZH 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)

    return mbox_locs, mbox_confs, box, var