resnet.py 11.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import math
import paddle.fluid as fluid

from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential

from ...model import Model
from ...download import get_weights_path_from_url

__all__ = [
    'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
]

model_urls = {
    'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams',
                 '0ba53eea9bc970962d0ef96f7b94057e'),
    'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams',
                 '46bc9f7c3dd2e55b7866285bee91eff3'),
    'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
                 '5ce890a9ad386df17cf7fe2313dca0a1'),
    'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams',
                  'fb07a451df331e4b0bb861ed97c3a9b9'),
    'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',
                  'f9c700f26d3644bb76ad2226ed5f5713'),
}


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=False)

        self._batch_norm = BatchNorm(num_filters, act=act)

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._batch_norm(x)

        return x


class BasicBlock(fluid.dygraph.Layer):
    """residual block of resnet18 and resnet34
    """
    expansion = 1

    def __init__(self, num_channels, num_filters, stride, shortcut=True):
        super(BasicBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            act='relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = short + conv1

        return fluid.layers.relu(y)


class BottleneckBlock(fluid.dygraph.Layer):
    """residual block of resnet50, resnet101 amd resnet152
    """

    expansion = 4

    def __init__(self, num_channels, num_filters, stride, shortcut=True):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * self.expansion,
            filter_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * self.expansion,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * self.expansion

    def forward(self, inputs):
        x = self.conv0(inputs)
        conv1 = self.conv1(x)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        x = fluid.layers.elementwise_add(x=short, y=conv2)

        return fluid.layers.relu(x)


class ResNet(Model):
    """ResNet model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        Block (BasicBlock|BottleneckBlock): block module of model.
        depth (int): layers of resnet, default: 50.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.
        with_pool (bool): use pool before the last fc layer or not. Default: True.
        classifier_activation (str): activation for the last fc layer. Default: 'softmax'.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import ResNet
            from paddle.incubate.hapi.vision.models.resnet import BottleneckBlock, BasicBlock

            resnet50 = ResNet(BottleneckBlock, 50)

            resnet18 = ResNet(BasicBlock, 18)

    """

    def __init__(self,
                 Block,
                 depth=50,
                 num_classes=1000,
                 with_pool=True,
                 classifier_activation='softmax'):
        super(ResNet, self).__init__()

        self.num_classes = num_classes
        self.with_pool = with_pool

        layer_config = {
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
            152: [3, 8, 36, 3],
        }
        assert depth in layer_config.keys(), \
            "supported depth are {} but input layer is {}".format(
                layer_config.keys(), depth)

        layers = layer_config[depth]

        in_channels = 64
        out_channels = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
            num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
        self.pool = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.layers = []
        for idx, num_blocks in enumerate(layers):
            blocks = []
            shortcut = False
            for b in range(num_blocks):
                if b == 1:
                    in_channels = out_channels[idx] * Block.expansion
                block = Block(
                    num_channels=in_channels,
                    num_filters=out_channels[idx],
                    stride=2 if b == 0 and idx != 0 else 1,
                    shortcut=shortcut)
                blocks.append(block)
                shortcut = True
            layer = self.add_sublayer("layer_{}".format(idx),
                                      Sequential(*blocks))
            self.layers.append(layer)

        if with_pool:
            self.global_pool = Pool2D(
                pool_size=7, pool_type='avg', global_pooling=True)

        if num_classes > 0:
            stdv = 1.0 / math.sqrt(out_channels[-1] * Block.expansion * 1.0)
            self.fc_input_dim = out_channels[-1] * Block.expansion * 1 * 1
            self.fc = Linear(
                self.fc_input_dim,
                num_classes,
                act=classifier_activation,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        x = self.conv(inputs)
        x = self.pool(x)
        for layer in self.layers:
            x = layer(x)

        if self.with_pool:
            x = self.global_pool(x)

        if self.num_classes > -1:
            x = fluid.layers.reshape(x, shape=[-1, self.fc_input_dim])
            x = self.fc(x)
        return x


def _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
        assert weight_path.endswith(
            '.pdparams'), "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model


def resnet18(pretrained=False, **kwargs):
    """ResNet 18-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import resnet18

            # build model
            model = resnet18()

            # build model and load imagenet pretrained weight
            # model = resnet18(pretrained=True)
    """
    return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs)


def resnet34(pretrained=False, **kwargs):
    """ResNet 34-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    
    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import resnet34

            # build model
            model = resnet34()

            # build model and load imagenet pretrained weight
            # model = resnet34(pretrained=True)
    """
    return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs)


def resnet50(pretrained=False, **kwargs):
    """ResNet 50-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import resnet50

            # build model
            model = resnet50()

            # build model and load imagenet pretrained weight
            # model = resnet50(pretrained=True)
    """
    return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)


def resnet101(pretrained=False, **kwargs):
    """ResNet 101-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import resnet101

            # build model
            model = resnet101()

            # build model and load imagenet pretrained weight
            # model = resnet101(pretrained=True)
    """
    return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs)


def resnet152(pretrained=False, **kwargs):
    """ResNet 152-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import resnet152

            # build model
            model = resnet152()

            # build model and load imagenet pretrained weight
            # model = resnet152(pretrained=True)
    """
    return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)