lenet.py 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle.fluid as fluid
L
LielinJiang 已提交
16
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

from ...model import Model

__all__ = ['LeNet']


class LeNet(Model):
    """LeNet model from
    `"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_

    Args:
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 10.
        classifier_activation (str): activation for the last fc layer. Default: 'softmax'.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import LeNet

            model = LeNet()
    """

    def __init__(self, num_classes=10, classifier_activation='softmax'):
        super(LeNet, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
            Conv2D(
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
46
            ReLU(),
47 48 49
            Pool2D(2, 'max', 2),
            Conv2D(
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
50
            ReLU(),
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120),
                Linear(120, 84),
                Linear(
                    84, 10, act=classifier_activation))

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x