data_transform.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_transform.h"
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
Q
Qiao Longfei 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
Qiao Longfei 已提交
25 26 27
namespace paddle {
namespace framework {

Y
yuyang18 已提交
28
static void PassTensorData(Tensor *from, Tensor *to) {
29 30 31 32
  to->ShareDataWith(*from);
  *from = Tensor();
}

Y
yuyang18 已提交
33 34 35
void TransformData(const OpKernelType &expected_kernel_type,
                   const OpKernelType &kernel_type_for_var,
                   const Tensor &input_tensor, Tensor *output_tensor) {
36 37 38 39
  bool transformed = false;
  Tensor in;
  in.ShareDataWith(input_tensor);
  Tensor out;
M
mozga-intel 已提交
40 41
  DataLayout lin = kernel_type_for_var.data_layout_;
  DataLayout lout = expected_kernel_type.data_layout_;
42 43

  // do layout transform
M
mozga-intel 已提交
44 45 46 47 48 49 50 51 52 53
  if (NeedTransformLayout(lout, lin)) {
    if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE(
          !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
          "No layout transform needed between two MKLDNN OPKernels");

      if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
#ifdef PADDLE_WITH_MKLDNN
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        out.ShareDataWith(input_tensor);
        // TODO(jczaja): Remove that once all mkldnn ops
        // are modified to work with mkldnn_blocked
        auto mkldnn_fmt = [&](int rank) {
          switch (rank) {
            case 5:
              return mkldnn::memory::format::ncdhw;
            case 4:
              return mkldnn::memory::format::nchw;
            case 3:
              return mkldnn::memory::format::ncw;
            case 2:
              return mkldnn::memory::format::nc;
            case 1:
              return mkldnn::memory::format::x;
            default:
              return mkldnn::memory::format::blocked;
          }
        };
73

74 75 76
        auto out_mem_pd = paddle::platform::create_prim_desc_from_dims(
            paddle::framework::vectorize2int(out.dims()),
            mkldnn_fmt(out.dims().size()));
77

78
        out.set_mkldnn_prim_desc(out_mem_pd);
M
mozga-intel 已提交
79 80 81 82 83 84 85 86 87 88 89
#endif
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
                                  &out);
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
    }
90 91 92 93
    transformed = true;
    PassTensorData(&out, &in);
  }

94
  // do data type transform
Q
Qiao Longfei 已提交
95 96 97 98 99 100
  if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
    TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
    transformed = true;
    PassTensorData(&out, &in);
  }

101
  // do device transform
102 103
  if (!platform::is_same_place(kernel_type_for_var.place_,
                               expected_kernel_type.place_)) {
Q
Qiao Longfei 已提交
104
    TransDataDevice(in, expected_kernel_type.place_, &out);
105 106
    transformed = true;
    PassTensorData(&out, &in);
107
  }
108

Q
Qiao Longfei 已提交
109
  PADDLE_ENFORCE(transformed, "No transform is applied, please check!");
110 111
  // get output data
  output_tensor->ShareDataWith(in);
112 113
}

Y
yuyang18 已提交
114 115
void SetTensorToVariable(const Variable &in_var, const Tensor &tensor,
                         Variable *out_var) {
116
  if (in_var.IsType<LoDTensor>()) {
Y
yuyang18 已提交
117 118
    auto &in_lod_tensor = in_var.Get<LoDTensor>();
    auto *tran_lod_tensor = out_var->GetMutable<LoDTensor>();
119 120 121 122
    tran_lod_tensor->set_lod(in_lod_tensor.lod());
    tran_lod_tensor->set_layout(in_lod_tensor.layout());
    tran_lod_tensor->ShareDataWith(tensor);
  } else if (in_var.IsType<SelectedRows>()) {
Y
yuyang18 已提交
123 124
    auto &in_selected_rows = in_var.Get<SelectedRows>();
    auto *trans_selected_rows = out_var->GetMutable<SelectedRows>();
125 126 127 128 129 130 131 132
    trans_selected_rows->set_height(in_selected_rows.height());
    trans_selected_rows->set_rows(in_selected_rows.rows());
    trans_selected_rows->mutable_value()->ShareDataWith(tensor);
  } else {
    PADDLE_THROW("unknown var type");
  }
}

Q
Qiao Longfei 已提交
133 134
}  // namespace framework
}  // namespace paddle