graph_send_recv_op.h 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct GraphSendRecvSumFunctor {
  void operator()(const bool& first_flag, const Tensor& src_slice,
                  Tensor* dst_slice) {
    auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
    auto eigen_dst = framework::EigenVector<T>::Flatten(*dst_slice);
    eigen_dst += eigen_src;
  }
};

template <typename T>
struct GraphSendRecvMinFunctor {
  void operator()(const bool& first_flag, const Tensor& src_slice,
                  Tensor* dst_slice) {
    auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
    auto eigen_dst = framework::EigenVector<T>::Flatten(*dst_slice);
    if (first_flag) {
      eigen_dst += eigen_src;
    } else {
      eigen_dst = eigen_dst.cwiseMin(eigen_src);
    }
  }
};

template <typename T>
struct GraphSendRecvMaxFunctor {
  void operator()(const int& first_flag, const Tensor& src_slice,
                  Tensor* dst_slice) {
    auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
    auto eigen_dst = framework::EigenVector<T>::Flatten(*dst_slice);
    if (first_flag) {
      eigen_dst += eigen_src;
    } else {
      eigen_dst = eigen_dst.cwiseMax(eigen_src);
    }
  }
};

template <typename T, typename IndexT, typename Functor>
void elementwise_inner_operation(const Tensor& src, Tensor* dst,
                                 const IndexT& src_index,
                                 const IndexT& dst_index,
                                 const bool& first_flag, Functor functor) {
  auto src_slice = src.Slice(src_index, src_index + 1);
  auto dst_slice = dst->Slice(dst_index, dst_index + 1);

  functor(first_flag, src_slice, &dst_slice);
}

template <typename T, typename IndexT, typename Functor>
void graph_send_recv_cpu_for_loop(const int& input_size, const int& index_size,
                                  const IndexT* s_index, const IndexT* d_index,
                                  const Tensor& src, Tensor* dst,
                                  const std::string& pool_type,
                                  int* dst_count = nullptr) {
  Functor functor;
  if (pool_type == "SUM") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      elementwise_inner_operation<T, IndexT, Functor>(src, dst, src_idx,
                                                      dst_idx, false, functor);
    }
  } else if (pool_type == "MEAN") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      elementwise_inner_operation<T, IndexT, Functor>(src, dst, src_idx,
                                                      dst_idx, false, functor);
    }
    for (int i = 0; i < index_size; ++i) {
      IndexT dst_idx = d_index[i];
      *(dst_count + dst_idx) += 1;
    }
    for (int i = 0; i < input_size; ++i) {
      if (*(dst_count + i) == 0) continue;
      auto dst_slice = dst->Slice(i, i + 1);
      auto eigen_dst = framework::EigenVector<T>::Flatten(dst_slice);
      eigen_dst = eigen_dst / static_cast<T>(*(dst_count + i));
    }
  } else if (pool_type == "MIN" || pool_type == "MAX") {
    std::set<IndexT> existed_dst;
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      bool in_set = existed_dst.find(dst_idx) != existed_dst.end();
      if (!in_set) {
        elementwise_inner_operation<T, IndexT, Functor>(src, dst, src_idx,
                                                        dst_idx, true, functor);
        existed_dst.emplace(dst_idx);
      } else {
        elementwise_inner_operation<T, IndexT, Functor>(
            src, dst, src_idx, dst_idx, false, functor);
      }
    }
  }
}

template <typename T, typename IndexT, typename Functor>
void graph_send_recv_cpu_for_loop_grad(
    const int& input_size, const int& index_size, const IndexT* s_index,
    const IndexT* d_index, const Tensor& src, Tensor* dst,
    const std::string& pool_type, const int* dst_count = nullptr,
    const Tensor* input = nullptr, const Tensor* output = nullptr) {
  if (pool_type == "SUM") {
    Functor functor;
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      elementwise_inner_operation<T, IndexT, Functor>(src, dst, src_idx,
                                                      dst_idx, false, functor);
    }
  } else if (pool_type == "MEAN") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      auto src_slice = src.Slice(src_idx, src_idx + 1);
      auto dst_slice = dst->Slice(dst_idx, dst_idx + 1);
      auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
      auto eigen_dst = framework::EigenVector<T>::Flatten(dst_slice);
      eigen_dst += (eigen_src / static_cast<T>(dst_count[src_idx]));
    }
  } else if (pool_type == "MIN" || pool_type == "MAX") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& forward_src_idx = d_index[i];
      const IndexT& forward_dst_idx = s_index[i];
      auto input_slice = input->Slice(forward_src_idx, forward_src_idx + 1);
      auto output_slice = output->Slice(forward_dst_idx, forward_dst_idx + 1);
      auto eigen_input = framework::EigenVector<T>::Flatten(input_slice);
      auto eigen_output = framework::EigenVector<T>::Flatten(output_slice);

      auto src_slice = src.Slice(forward_dst_idx, forward_dst_idx + 1);
      auto dst_slice = dst->Slice(forward_src_idx, forward_src_idx + 1);
      auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
      auto eigen_dst = framework::EigenVector<T>::Flatten(dst_slice);
      eigen_dst += eigen_src * (eigen_output == eigen_input);
    }
  }
}

template <typename DeviceContext, typename T, typename IndexT>
void GraphSendRecvOpKernelLaunchHelper(const framework::ExecutionContext& ctx,
                                       const Tensor& src_index) {
  auto* X = ctx.Input<Tensor>("X");
  auto* dst_index = ctx.Input<Tensor>("Dst_index");
  auto* Y = ctx.Output<Tensor>("Out");

  const int& index_size = src_index.dims()[0];

  T* p_output = Y->mutable_data<T>(ctx.GetPlace());
  const auto& src_dims = X->dims();
  int64_t memset_size = 1;
  for (int i = 0; i < src_dims.size(); ++i) memset_size *= src_dims[i];
  const size_t& memset_bytes = memset_size * sizeof(T);
  memset(p_output, 0, memset_bytes);

  if (index_size == 0) return;

  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index->data<IndexT>();
  const std::string& pool_type = ctx.Attr<std::string>("pool_type");
  if (pool_type == "SUM") {
    graph_send_recv_cpu_for_loop<T, IndexT, GraphSendRecvSumFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type);
  } else if (pool_type == "MIN") {
    graph_send_recv_cpu_for_loop<T, IndexT, GraphSendRecvMinFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type);
  } else if (pool_type == "MAX") {
    graph_send_recv_cpu_for_loop<T, IndexT, GraphSendRecvMaxFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type);
  } else if (pool_type == "MEAN") {
    auto* dst_count = ctx.Output<Tensor>("Dst_count");
    int* p_dst_count = dst_count->mutable_data<int>(ctx.GetPlace());
    memset(p_dst_count, 0, src_dims[0] * sizeof(int));
    graph_send_recv_cpu_for_loop<T, IndexT, GraphSendRecvSumFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type,
        p_dst_count);
  }
}

template <typename DeviceContext, typename T, typename IndexT>
void GraphSendRecvGradOpKernelLaunchHelper(
    const framework::ExecutionContext& ctx, const Tensor& src_index) {
  auto* X = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dst_index = ctx.Input<Tensor>("Src_index");
  auto* Y = ctx.Output<Tensor>(framework::GradVarName("X"));

  const int& index_size = src_index.dims()[0];

  T* p_output = Y->mutable_data<T>(ctx.GetPlace());
  const auto& src_dims = X->dims();
  int64_t memset_size = 1;
  for (int i = 0; i < src_dims.size(); ++i) memset_size *= src_dims[i];
  const size_t& memset_bytes = memset_size * sizeof(T);
  memset(p_output, 0, memset_bytes);

  if (index_size == 0) return;

  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index->data<IndexT>();

  const std::string& pool_type = ctx.Attr<std::string>("pool_type");
  if (pool_type == "SUM") {
    graph_send_recv_cpu_for_loop_grad<T, IndexT, GraphSendRecvSumFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type);
  } else if (pool_type == "MEAN") {
    auto* dst_count = ctx.Input<Tensor>("Dst_count");
    const int* s_count = dst_count->data<int>();
    // Functor not used here.
    graph_send_recv_cpu_for_loop_grad<T, IndexT, GraphSendRecvSumFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type, s_count);
  } else if (pool_type == "MIN" || pool_type == "MAX") {
    const auto* input = ctx.Input<Tensor>("X");
    const auto* output = ctx.Input<Tensor>("Out");
    // Functor not used here.
    graph_send_recv_cpu_for_loop_grad<T, IndexT, GraphSendRecvMinFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, *X, Y, pool_type, nullptr,
        input, output);
  }
}

template <typename DeviceContext, typename T>
class GraphSendRecvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* src_index = ctx.Input<Tensor>("Src_index");
252
    auto index_type = framework::TransToProtoVarType(src_index->dtype());
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    if (index_type == framework::proto::VarType::INT32) {
      GraphSendRecvOpKernelLaunchHelper<DeviceContext, T, int>(ctx, *src_index);
    } else if (index_type == framework::proto::VarType::INT64) {
      GraphSendRecvOpKernelLaunchHelper<DeviceContext, T, int64_t>(ctx,
                                                                   *src_index);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported Src_index or Dst_index type, Expected int, int64, but "
          "got %s.",
          index_type));
    }
  }
};

template <typename DeviceContext, typename T>
class GraphSendRecvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* src_index = ctx.Input<Tensor>("Dst_index");
273
    auto index_type = framework::TransToProtoVarType(src_index->dtype());
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    if (index_type == framework::proto::VarType::INT32) {
      GraphSendRecvGradOpKernelLaunchHelper<DeviceContext, T, int>(ctx,
                                                                   *src_index);
    } else if (index_type == framework::proto::VarType::INT64) {
      GraphSendRecvGradOpKernelLaunchHelper<DeviceContext, T, int64_t>(
          ctx, *src_index);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported Src_index or Dst_index type, Expected int, int64, but "
          "got %s.",
          index_type));
    }
  }
};

}  // namespace operators
}  // namespace paddle