histogram_kernel.cu 5.7 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/histogram_kernel.h"

H
hong 已提交
17
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
18
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
20
#include "paddle/phi/core/kernel_registry.h"
21 22
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
H
hong 已提交
24

25
namespace phi {
H
hong 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

using IndexType = int64_t;
using paddle::platform::PADDLE_CUDA_NUM_THREADS;

inline int GET_BLOCKS(const int N) {
  return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
}

template <typename T, typename IndexType>
__device__ static IndexType GetBin(T input_value,
                                   T min_value,
                                   T max_value,
                                   int64_t nbins) {
  IndexType bin = static_cast<int>((input_value - min_value) * nbins /
                                   (max_value - min_value));
  IndexType output_index = bin < nbins - 1 ? bin : nbins - 1;
  return output_index;
}

template <typename T, typename IndexType>
__global__ void KernelHistogram(const T* input,
                                const int total_elements,
                                const int64_t nbins,
                                const T min_value,
                                const T max_value,
                                int64_t* output) {
  extern __shared__ int64_t buf_hist[];
  for (int i = threadIdx.x; i < nbins; i += blockDim.x) {
    buf_hist[i] = 0;
  }
  __syncthreads();

  CUDA_KERNEL_LOOP(input_index, total_elements) {
    // const IndexType input_index = threadIdx.x + blockIdx.x * blockDim.x;
    const auto input_value = input[input_index];
    if (input_value >= min_value && input_value <= max_value) {
      const IndexType output_index =
          GetBin<T, IndexType>(input_value, min_value, max_value, nbins);
      paddle::platform::CudaAtomicAdd(&buf_hist[output_index], 1);
    }
  }
  __syncthreads();

  for (int i = threadIdx.x; i < nbins; i += blockDim.x) {
    paddle::platform::CudaAtomicAdd(&output[i], buf_hist[i]);
  }
}

template <typename T, typename Context>
void HistogramKernel(const Context& dev_ctx,
                     const DenseTensor& input,
                     int64_t bins,
                     int min,
                     int max,
                     DenseTensor* output) {
  auto& nbins = bins;
  auto& minval = min;
  auto& maxval = max;

  const T* input_data = input.data<T>();
  const int input_numel = input.numel();

  int64_t* out_data = output->mutable_data<int64_t>(dev_ctx.GetPlace());
89
  phi::funcs::SetConstant<Context, int64_t>()(
H
hong 已提交
90 91 92 93 94 95 96 97
      dev_ctx, output, static_cast<int64_t>(0));

  if (input_data == nullptr) return;

  T output_min = static_cast<T>(minval);
  T output_max = static_cast<T>(maxval);

  if (output_min == output_max) {
98
    auto input_x = phi::EigenVector<T>::Flatten(input);
H
hong 已提交
99 100 101 102

    DenseTensor input_min_t, input_max_t;
    auto* input_min_data = input_min_t.mutable_data<T>({1}, dev_ctx.GetPlace());
    auto* input_max_data = input_max_t.mutable_data<T>({1}, dev_ctx.GetPlace());
103 104
    auto input_min_scala = phi::EigenScalar<T>::From(input_min_t);
    auto input_max_scala = phi::EigenScalar<T>::From(input_max_t);
H
hong 已提交
105 106 107 108 109 110 111

    auto* place = dev_ctx.eigen_device();
    input_min_scala.device(*place) = input_x.minimum();
    input_max_scala.device(*place) = input_x.maximum();

    DenseTensor input_min_cpu, input_max_cpu;
    paddle::framework::TensorCopySync(
112
        input_min_t, phi::CPUPlace(), &input_min_cpu);
H
hong 已提交
113
    paddle::framework::TensorCopySync(
114
        input_max_t, phi::CPUPlace(), &input_max_cpu);
H
hong 已提交
115 116 117 118 119 120 121 122 123

    output_min = input_min_cpu.data<T>()[0];
    output_max = input_max_cpu.data<T>()[0];
  }
  if (output_min == output_max) {
    output_min = output_min - 1;
    output_max = output_max + 1;
  }

124 125 126 127 128 129
  PADDLE_ENFORCE_EQ((std::isinf(static_cast<float>(output_min)) ||
                     std::isnan(static_cast<float>(output_max)) ||
                     std::isinf(static_cast<float>(output_min)) ||
                     std::isnan(static_cast<float>(output_max))),
                    false,
                    phi::errors::OutOfRange("range of min, max is not finite"));
H
hong 已提交
130 131 132
  PADDLE_ENFORCE_GE(
      output_max,
      output_min,
133
      phi::errors::InvalidArgument(
H
hong 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
          "max must be larger or equal to min. If min and max are both zero, "
          "the minimum and maximum values of the data are used. "
          "But received max is %d, min is %d",
          maxval,
          minval));

  auto stream = dev_ctx.stream();
  KernelHistogram<T, IndexType><<<GET_BLOCKS(input_numel),
                                  PADDLE_CUDA_NUM_THREADS,
                                  nbins * sizeof(int64_t),
                                  stream>>>(
      input_data, input_numel, nbins, output_min, output_max, out_data);
}

148
}  // namespace phi
H
hong 已提交
149

150
PD_REGISTER_KERNEL(histogram,
H
hong 已提交
151 152
                   GPU,
                   ALL_LAYOUT,
153
                   phi::HistogramKernel,
H
hong 已提交
154 155 156 157
                   float,
                   double,
                   int,
                   int64_t) {}