test_lstm_op.py 9.4 KB
Newer Older
1 2 3 4
import unittest
import numpy as np
from op_test import OpTest

5 6 7 8
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0

9 10 11 12 13 14

def identity(x):
    return x


def sigmoid(x):
15 16 17 18
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))
19 20 21


def tanh(x):
22 23 24
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.
25 26 27 28 29 30


def relu(x):
    return np.maximum(x, 0)


D
dangqingqing 已提交
31 32 33 34 35 36 37 38
ACTVATION = {
    'identity': identity,
    'sigmoid': sigmoid,
    'tanh': tanh,
    'relu': relu
}


39 40 41 42 43 44 45 46 47
def lstm(
        input,  # T x 4D
        lod,  # 1 x N
        h0=None,  # N x D
        c0=None,  # N x D
        w_h=None,  # D x 4D
        w_b=None,  # 1 x 4D
        w_c=None,  # 1 x 3D
        is_reverse=False,
D
dangqingqing 已提交
48 49 50 51
        act_gate=None,
        act_cell=None,
        act_cand=None):
    def _step(x, w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand):
52 53 54
        g = np.dot(h_pre, w_h)  # 1 x 4D
        g = g + x
        g = np.reshape(g, (1, g.size))
D
dangqingqing 已提交
55
        c, g_i, g_f, g_o = np.split(g, 4, axis=1)
56
        if w_c is None:
D
dangqingqing 已提交
57 58
            g_i = act_gate(g_i)  # 1 x D
            g_f = act_gate(g_f)  # 1 x D
59 60
        else:
            w_ic, w_fc, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
61 62
            g_i = act_gate(g_i + w_ic * c_pre)  # 1 x D
            g_f = act_gate(g_f + w_fc * c_pre)  # 1 x D
D
dangqingqing 已提交
63
        c = g_f * c_pre + g_i * act_cand(c)  # 1 x D
64 65

        if w_c is None:
D
dangqingqing 已提交
66
            g_o = act_gate(g_o)  # 1 x D
67 68
        else:
            _, _, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
69 70
            g_o = act_gate(g_o + w_oc * c)  # 1 x D
        h = g_o * act_cell(c)
D
dangqingqing 已提交
71
        return h, c
72

D
dangqingqing 已提交
73 74 75 76 77 78 79
    def _reverse(x, lod):
        y = np.zeros_like(x)
        for i in range(len(lod) - 1):
            b, e = lod[i], lod[i + 1]
            y[b:e, :] = np.flip(x[b:e, :], 0)
        return y

80 81 82 83
    offset = lod[0]
    batch_size = len(offset) - 1
    hidden = []
    cell = []
D
dangqingqing 已提交
84
    input = _reverse(input, offset) if is_reverse else input
85 86 87 88 89 90 91
    if w_b is not None:
        input = input + np.tile(w_b, (offset[-1], 1))
    for i in range(batch_size):
        # compute one sequence
        seq_len = offset[i + 1] - offset[i]
        x = input[offset[i]:offset[i + 1], :]
        h_pre = h0[i]  # 1 x D
92
        c_pre = c0[i]  # 1 x D
93 94
        for j in range(seq_len):
            # compute one step
D
dangqingqing 已提交
95 96
            h_pre, c_pre = _step(x[j], w_h, w_c, h_pre, c_pre, act_gate,
                                 act_cell, act_cand)
97 98 99
            hidden.append(h_pre.flatten())
            cell.append(c_pre.flatten())

100 101
    hidden = np.array(hidden).astype('float64')
    cell = np.array(cell).astype('float64')
D
dangqingqing 已提交
102 103 104 105

    hidden = _reverse(hidden, offset) if is_reverse else hidden
    cell = _reverse(cell, offset) if is_reverse else cell

106 107
    assert hidden.shape == (input.shape[0], input.shape[1] / 4)
    assert cell.shape == (input.shape[0], input.shape[1] / 4)
D
dangqingqing 已提交
108
    return hidden, cell
109 110


D
dangqingqing 已提交
111
class TestLstmOp(OpTest):
112
    def set_argument(self):
113
        self.lod = [[0, 2, 5, 7]]
114 115
        self.D = 16

116 117 118
        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
D
dangqingqing 已提交
119

D
dangqingqing 已提交
120
        self.has_initial_state = False
D
dangqingqing 已提交
121
        self.is_reverse = False
D
dangqingqing 已提交
122
        self.use_peepholes = True
D
dangqingqing 已提交
123 124

    def setUp(self):
125
        self.set_argument()
126
        self.op_type = 'lstm'
D
dangqingqing 已提交
127 128 129 130

        T = self.lod[0][-1]
        N = len(self.lod[0]) - 1

131
        x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
132 133 134 135 136 137
        if self.has_initial_state:
            h0 = np.random.normal(size=(N, self.D)).astype('float64')
            c0 = np.random.normal(size=(N, self.D)).astype('float64')
        else:
            h0 = np.zeros((N, self.D)).astype('float64')
            c0 = np.zeros((N, self.D)).astype('float64')
138
        w = np.random.normal(size=(self.D, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
139 140 141 142
        if self.use_peepholes:
            b = np.random.normal(size=(1, 7 * self.D)).astype('float64')
        else:
            b = np.random.normal(size=(1, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
143

D
dangqingqing 已提交
144 145
        w_b = b[:, 0:4 * self.D]
        w_c = b[:, 4 * self.D:] if self.use_peepholes else None
D
dangqingqing 已提交
146 147 148
        h, c = lstm(x, self.lod, h0, c0, w, w_b, w_c, self.is_reverse,
                    ACTVATION[self.act_gate], ACTVATION[self.act_cell],
                    ACTVATION[self.act_cand])
149

150 151
        self.inputs = {'Input': (x, self.lod), 'Weight': w}

D
dangqingqing 已提交
152
        self.inputs['Bias'] = b
153

D
dangqingqing 已提交
154 155 156
        if self.has_initial_state:
            self.inputs['H0'] = h0
            self.inputs['C0'] = c0
157

158 159 160 161
        self.outputs = {
            'Hidden': (h, self.lod),
            'Cell': (c, self.lod),
        }
162
        self.attrs = {
D
dangqingqing 已提交
163
            'use_peepholes': self.use_peepholes,
164 165 166 167
            'is_reverse': self.is_reverse,
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
            'candidate_activation': self.act_cand
168 169
        }

D
dangqingqing 已提交
170
    def test_check_output(self):
D
dangqingqing 已提交
171
        self.check_output(atol=1e-8)
172

D
dangqingqing 已提交
173
    def test_check_grad(self):
D
dangqingqing 已提交
174 175 176 177 178
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
179
        self.check_grad(
D
dangqingqing 已提交
180
            ['Input', 'Weight', 'Bias'], ['Hidden'], max_relative_error=5e-4)
181

D
dangqingqing 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def test_check_grad_ingore_bias(self):
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Weight'], ['Hidden'],
            max_relative_error=5e-4,
            no_grad_set=set('Bias'))

    def test_check_grad_ingore_weight(self):
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Bias'], ['Hidden'],
            max_relative_error=5e-4,
            no_grad_set=set('Weight'))

    def test_check_grad_ingore_input(self):
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Weight', 'Bias'], ['Hidden'],
            max_relative_error=5e-4,
            no_grad_set=set('Input'))

212

D
dangqingqing 已提交
213
class TestLstmOpHasInitial(TestLstmOp):
214
    def set_argument(self):
215
        self.lod = [[0, 2, 5, 7]]
D
dangqingqing 已提交
216
        self.D = 16
217 218 219 220 221

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

D
dangqingqing 已提交
222
        self.has_initial_state = True
223
        self.is_reverse = True
D
dangqingqing 已提交
224
        self.use_peepholes = True
225

D
dangqingqing 已提交
226 227 228 229 230 231 232 233 234
    def test_check_grad(self):
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Weight', 'Bias', 'H0', 'C0'], ['Hidden'],
            max_relative_error=5e-4)
235

D
dangqingqing 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    # In order to speed up, skip following testing
    def test_check_grad_ingore_bias(self):
        return

    def test_check_grad_ingore_weight(self):
        return

    def test_check_grad_ingore_input(self):
        return

    def test_check_grad_ingore_h0(self):
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Weight', 'Bias', 'C0'], ['Hidden'],
            max_relative_error=5e-4,
            no_grad_set=set('H0'))

    def test_check_grad_ingore_c0(self):
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Weight', 'Bias', 'H0'], ['Hidden'],
            max_relative_error=5e-4,
            no_grad_set=set('C0'))


class TestLstmOpRerverse(TestLstmOp):
268 269 270 271 272 273 274 275
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

D
dangqingqing 已提交
276 277 278
        self.has_initial_state = False
        self.is_reverse = True
        self.use_peepholes = True
279

D
dangqingqing 已提交
280 281 282
    # In order to speed up, skip following testing
    def test_check_grad_ingore_bias(self):
        return
283

D
dangqingqing 已提交
284 285
    def test_check_grad_ingore_weight(self):
        return
286

D
dangqingqing 已提交
287 288 289 290 291
    def test_check_grad_ingore_input(self):
        return


class TestLstmOpNotUsePeepholes(TestLstmOp):
292
    def set_argument(self):
293
        self.lod = [[0, 2, 5, 7]]
D
dangqingqing 已提交
294
        self.D = 16
295 296 297 298 299

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

D
dangqingqing 已提交
300
        self.has_initial_state = False
301
        self.is_reverse = True
D
dangqingqing 已提交
302 303 304 305 306 307 308 309 310 311 312
        self.use_peepholes = False

    # In order to speed up, skip following testing
    def test_check_grad_ingore_bias(self):
        return

    def test_check_grad_ingore_weight(self):
        return

    def test_check_grad_ingore_input(self):
        return
313 314 315


if __name__ == '__main__':
316
    unittest.main()