primops.py 16.2 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import functools
import operator

L
levi131 已提交
18 19
import paddle
from paddle.fluid.layer_helper import LayerHelper
20

L
levi131 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
from .primreg import REGISTER_FN


def _simple_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type=optype, inputs={'X': x}, outputs={'Y': out}, attrs={})
    return out


def _simple_binop(helper):
    optype = helper.layer_type
    x, y, out = tuple(map(helper.kwargs.get, ('x', 'y', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

40 41 42 43 44 45 46
    helper.append_op(type=optype,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs={})
L
levi131 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    return out


def _manipulation_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))

    attrs = {
        k: helper.kwargs[k]
        for k in ('shape', 'axis', 'index') if k in helper.kwargs
    }

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

62 63 64 65
    helper.append_op(type=optype,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    return out


# Each primitive op is given a Python constructor for sake of convenience.
def fill_const(value, shape, dtype, out=None):
    attrs = {'value': value, 'shape': shape, 'dtype': dtype}
    helper = LayerHelper('fill_constant_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type, outputs={'Y': out}, attrs=attrs)
    return out


def neg(x, out=None):
    zero = fill_const(0.0, x.shape, x.dtype)
    return sub(zero, x)


def set_value(x, y, axis, starts, ends, strides, out):
    assert x is out, "x and out should be the same Tensor in set_value"
    attrs = {'axes': axis, 'starts': starts, 'ends': ends, 'steps': strides}
    helper = LayerHelper('set_value', **locals())
88 89 90 91 92 93 94
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'Input': x,
                         'ValueTensor': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
L
levi131 已提交
95 96 97
    return out


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
def mean(x, axis=None, keepdim=False):
    axes = axis or tuple(range(0, len(x.shape)))
    sum = reduce_sum(x, axis=axes, keepdim=keepdim)
    norm = fill_const(shape=sum.shape,
                      value=functools.reduce(operator.mul,
                                             [x.shape[axis] for axis in axes]),
                      dtype=sum.dtype)
    return div(sum, norm)


def ones(shape, dtype):
    return fill_const(1, shape, dtype)


def zeros(shape, dtype):
    return fill_const(0, shape, dtype)


def batch_norm(x,
               axis,
               gamma,
               beta,
               run_mean,
               run_var,
               eps=1e-5,
               momentum=0.9,
               use_run_stat=False,
               reserve_space=None):
    """batch normalizer.

    Args:
        x (Tensor): A tensor to be normalized.
        axis (int): The features axis.
        gamma (Tensor): The scale factor.
        beta (float): The shift factor.
        run_mean (Tensor): Running mean.
        run_var (Tensor): Running variance.
        eps (float, optional): A value added to the denominator for numerical
            stability. Defaults to 1e-5.
        momentum (float, optional): The value used for the running_mean and
            running_var computation. Can be set to None for cumulative moving
            average (i.e. simple average). Defaults to 0.9.
        use_run_stat (bool, optional): Whether or not using runing statistics.
            Defaults to False.
    """
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != axis)
    stats_shape = tuple(1 if i in reduce_axes else s
                        for i, s in enumerate(x.shape))

    batch_mean = zeros(run_mean.shape, run_mean.dtype)
    batch_var = zeros(run_var.shape, run_var.dtype)

    if not use_run_stat:
        batch_mean = mean(x, reduce_axes, keepdim=True)
        batch_var = mean(square(sub(x, broadcast(batch_mean, x.shape))),
                         reduce_axes,
                         keepdim=True)
        x_hat = div(
            sub(x, broadcast(batch_mean, x.shape)),
            sqrt(
                add(broadcast(batch_var, x.shape),
                    fill_const(eps, x.shape, batch_var.dtype))))

        momentum = fill_const(momentum, run_mean.shape, run_mean.dtype)
        run_mean = add(
            mul(momentum, run_mean),
            mul(sub(ones(run_mean.shape, run_mean.dtype), momentum),
                reshape(batch_mean, run_mean.shape)))
        run_var = add(
            mul(momentum, run_var),
            mul(sub(ones(run_var.shape, run_var.dtype), momentum),
                reshape(batch_var, run_var.shape)))
    else:
        x_hat = div(
            sub(x, broadcast(reshape(run_mean, stats_shape), x.shape)),
            sqrt(
                add(broadcast(reshape(run_var, stats_shape), x.shape),
                    fill_const(eps, x.shape, x.dtype))))
    y = add(mul(broadcast(reshape(gamma, stats_shape), x_hat.shape), x_hat),
            broadcast(reshape(beta, stats_shape), x_hat.shape))

    if reserve_space:
        return run_mean, reserve_space, batch_mean, batch_var, run_var, y
    else:
        return run_mean, batch_mean, batch_var, run_var, y


def square(x):
    return pow(x, fill_const(2., x.shape, x.dtype))


L
levi131 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
@REGISTER_FN('add_p', 'X', 'Y', 'Z')
def add(x, y, out=None):
    return _simple_binop(LayerHelper('add_p', **locals()))


@REGISTER_FN('sub_p', 'X', 'Y', 'Z')
def sub(x, y, out=None):
    return _simple_binop(LayerHelper('sub_p', **locals()))


@REGISTER_FN('mul_p', 'X', 'Y', 'Z')
def mul(x, y, out=None):
    return _simple_binop(LayerHelper('mul_p', **locals()))


@REGISTER_FN('div_p', 'X', 'Y', 'Z')
def div(x, y, out=None):
    return _simple_binop(LayerHelper('div_p', **locals()))


@REGISTER_FN('sqrt_p', 'X', 'Y')
def sqrt(x, out=None):
    return _simple_unop(LayerHelper('sqrt_p', **locals()))


@REGISTER_FN('tanh_p', 'X', 'Y')
def tanh(x, out=None):
    return _simple_unop(LayerHelper('tanh_p', **locals()))


219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
@REGISTER_FN('sin_p', 'X', 'Y')
def sin(x, out=None):
    return _simple_unop(LayerHelper('sin_p', **locals()))


@REGISTER_FN('cos_p', 'X', 'Y')
def cos(x, out=None):
    return _simple_unop(LayerHelper('cos_p', **locals()))


@REGISTER_FN('exp_p', 'X', 'Y')
def exp(x, out=None):
    return _simple_unop(LayerHelper('exp_p', **locals()))


234 235 236 237 238
@REGISTER_FN('abs_p', 'X', 'Y')
def abs(x, out=None):
    return _simple_unop(LayerHelper('abs_p', **locals()))


L
levi131 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
@REGISTER_FN('reshape_p', 'X', 'Y')
def reshape(x, shape, out=None):
    return _manipulation_unop(LayerHelper('reshape_p', **locals()))


@REGISTER_FN('broadcast_p', 'X', 'Y')
def broadcast(x, shape, out=None):
    return _manipulation_unop(LayerHelper('broadcast_p', **locals()))


@REGISTER_FN('transpose_p', 'X', 'Y')
def transpose(x, axis=None, out=None):
    return _manipulation_unop(LayerHelper('transpose_p', **locals()))


@REGISTER_FN('split_p', 'X', 'YS')
def split(x, num_or_sections, axis=0, outs=None):
    if isinstance(num_or_sections, (list, tuple)):
        n = len(num_or_sections)
    else:
259 260
        if not isinstance(num_or_sections, int):
            raise TypeError(
261 262
                f'num_or_sections must be int, but got {type(num_or_sections)}.'
            )
L
levi131 已提交
263 264 265 266 267 268 269 270 271 272
        n = num_or_sections

    attrs = {'num_or_sections': num_or_sections, 'axis': axis}

    helper = LayerHelper('split_p', **locals())
    if outs is None:
        outs = [
            helper.create_variable_for_type_inference(dtype=x.dtype)
            for i in range(n)
        ]
273 274 275 276
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'YS': outs},
                     attrs=attrs)
L
levi131 已提交
277 278 279 280 281
    return outs


@REGISTER_FN('concat_p', 'XS', 'Y')
def concat(xs, axis=0, out=None):
282 283
    if isinstance(xs, paddle.fluid.framework.Variable):
        xs = [xs]
L
levi131 已提交
284 285 286 287
    attrs = {'axis': axis}
    helper = LayerHelper('concat_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=xs[0].dtype)
288 289 290 291
    helper.append_op(type=helper.layer_type,
                     inputs={'XS': xs},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
292 293 294
    return out


295 296 297 298
@REGISTER_FN('reduce_sum_p', 'X', 'Y')
def reduce_sum(x, axis=None, keepdim=False, out=None):
    axes = axis or tuple(range(0, len(x.shape)))
    axes = (axes, ) if isinstance(axes, int) else axes
299 300 301 302
    if not isinstance(axis, (tuple, list)):
        raise TypeError(f'axis must be tuple or list, but got {type(axis)}')
    if not isinstance(keepdim, bool):
        raise TypeError(f'keepdim must be bool, but got {type(keepdim)}')
L
levi131 已提交
303

304 305
    attrs = {'axis': axis, 'keepdim': keepdim}
    helper = LayerHelper('reduce_sum_p', **locals())
L
levi131 已提交
306 307 308
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

309 310 311 312
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
313 314 315 316 317 318 319 320 321 322
    return out


@REGISTER_FN('matmul_p', 'X', 'Y', 'Z')
def matmul(x, y, out=None):
    return _simple_binop(LayerHelper('matmul_p', **locals()))


@REGISTER_FN('slice_select_p', 'X', 'Y')
def slice_select(x, axis, starts, ends, strides, out=None):
323 324 325 326 327 328 329 330 331 332 333 334 335 336
    if not isinstance(axis, (list, tuple)):
        raise TypeError(f'Argument type error. `axis` is supposed to be list or'
                        f' tuple but found {type(axis)}.')
    if not isinstance(starts, (list, tuple)):
        raise TypeError(
            f'Argument type error. `starts` is supposed to be list or'
            f' tuple but found {type(starts)}.')
    if not isinstance(ends, (list, tuple)):
        raise TypeError(f'Argument type error. `ends` is supposed to be list or'
                        f' tuple but found {type(ends)}.')
    assert len(axis) == len(starts) == len(ends) == len(strides), (
        f'len(axis), len(starts), len(ends) and len(strides) should be equal, '
        f'but len(axis)={len(axis)}, len(starts)={len(starts)}, '
        f'len(ends)={len(ends)} and len(strides)={len(strides)}')
L
levi131 已提交
337 338 339 340 341

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
342 343 344 345
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
346 347 348 349 350
    return out


@REGISTER_FN('slice_assign_p', 'X', 'Y', 'Z')
def slice_assign(x, y, axis, starts, ends, strides, out=None):
351 352 353 354 355 356 357
    assert len(starts) == len(ends) == len(strides) == len(axis), (
        f'len(starts), len(ends), len(strides) and len(axis) should be equal, '
        f'but len(starts)={len(starts)}, len(ends)={len(ends)}, '
        f'len(strides)={len(strides)} and len(axis)={len(axis)}')
    assert len(y.shape) == len(x.shape), (
        f'len(y.shape) should be equal to len(x.shape), '
        f'but len(y.shape)={len(y.shape)} and len(x.shape)={len(x.shape)}.')
L
levi131 已提交
358 359 360 361 362

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_assign_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
363 364 365 366 367 368 369
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
370 371 372
    return out


373
@REGISTER_FN('gather_p', 'X', 'IndexTensor', 'Y')
L
levi131 已提交
374 375 376 377 378
def gather(x, indextensor, axis, out=None):
    attrs = {'axis': axis}
    helper = LayerHelper('gather_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
379 380 381 382 383 384 385
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'IndexTensor': indextensor
                     },
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
386 387 388 389 390
    return out


@REGISTER_FN('scatter_add_p', 'X', 'Y', 'IndexTensor', 'Z')
def scatter_add(x, y, indextensor, axis, out=None):
391 392 393 394 395 396 397 398 399 400
    assert len(x.shape) == len(y.shape), (
        f'len(x.shape) should be equal to len(y.shape), '
        f'but len(x.shape)={len(x.shape)} and len(y.shape)={len(y.shape)}.')
    assert len(
        indextensor.shape
    ) == 1, f'len(indextensor.shape) must be equal to 1, but got {len(indextensor.shape)}.'
    assert y.shape[axis] == indextensor.shape[0], (
        f'y.shape[axis] should be equal to indextensor.shape[0], '
        f'but y.shape[axis]={y.shape[axis]} and '
        f'indextensor.shape[0]={indextensor.shape[0]}.')
L
levi131 已提交
401 402 403 404
    attrs = {'axis': axis}
    helper = LayerHelper('scatter_add_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
405 406 407 408 409 410 411 412
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y,
                         'IndexTensor': indextensor
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
413
    return out
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450


@REGISTER_FN('log_p', 'X', 'Y')
def log(x, out=None):
    return _simple_unop(LayerHelper('log_p', **locals()))


@REGISTER_FN('select_p', 'Condition', 'X', 'Y', 'Z')
def select(cond, x, y, out=None):
    if len(cond.shape) != len(x.shape):
        raise ValueError(
            "len(cond.shape) should be equal to len(x.shape), but len(cond.shape)={} and len(x.shape)={}."
            .format(len(cond.shape), len(x.shape)))

    if len(x.shape) != len(y.shape):
        raise ValueError(
            "len(x.shape) should be equal to len(y.shape), but len(x.shape)={} and len(y.shape)={}."
            .format(len(x.shape), len(y.shape)))

    helper = LayerHelper('select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'Condition': cond,
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out})
    return out


@REGISTER_FN('eq_p', 'X', 'Y', 'Z')
def eq(x, y, out=None):
    return _simple_binop(LayerHelper('eq_p', **locals()))


451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
@REGISTER_FN('gt_p', 'X', 'Y', 'Z')
def gt(x, y, out=None):
    return _simple_binop(LayerHelper('gt_p', **locals()))


@REGISTER_FN('ge_p', 'X', 'Y', 'Z')
def ge(x, y, out=None):
    return _simple_binop(LayerHelper('ge_p', **locals()))


@REGISTER_FN('ne_p', 'X', 'Y', 'Z')
def ne(x, y, out=None):
    return _simple_binop(LayerHelper('ne_p', **locals()))


466 467 468
@REGISTER_FN('pow_p', 'X', 'Y', 'Z')
def pow(x, y, out=None):
    return _simple_binop(LayerHelper('pow_p', **locals()))
469 470 471 472 473


@REGISTER_FN('max_p', 'X', 'Y', 'Z')
def max(x, y, out=None):
    return _simple_binop(LayerHelper('max_p', **locals()))
474 475 476 477 478


@REGISTER_FN('erf_p', 'X', 'Y')
def erf(x, out=None):
    return _simple_unop(LayerHelper('erf_p', **locals()))
479 480 481 482 483 484 485 486 487 488 489 490


@REGISTER_FN('cast_p', 'X', 'Y')
def cast(x, dtype, out=None):
    helper = LayerHelper('cast_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs={'dtype': dtype})
    return out
J
Jiabin Yang 已提交
491 492 493 494 495


@REGISTER_FN('rsqrt_p', 'X', 'Y')
def rsqrt(x, out=None):
    return _simple_unop(LayerHelper('rsqrt_p', **locals()))