tensor.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor.h"
W
wanghuancoder 已提交
16

17 18
DECLARE_bool(use_stream_safe_cuda_allocator);

W
wanghuancoder 已提交
19 20 21 22 23 24 25
namespace paddle {
namespace memory {
namespace allocation {
class Allocation;
}  // namespace allocation
}  // namespace memory
}  // namespace paddle
Y
Yu Yang 已提交
26 27

namespace paddle {
28
namespace framework {
Y
Yu Yang 已提交
29
extern size_t SizeOfType(proto::VarType::Type type);
30
void Tensor::check_memory_size() const {
31 32 33
  PADDLE_ENFORCE_NOT_NULL(holder_, platform::errors::PreconditionNotMet(
                                       "Tensor holds no memory. "
                                       "Call Tensor::mutable_data firstly."));
L
Leo Chen 已提交
34 35
  size_t size = numel() * SizeOfType(type());

36
  PADDLE_ENFORCE_LE(
L
Leo Chen 已提交
37
      size, memory_size(),
38 39 40 41 42
      platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
          "But received  Tensor's dimension is d%, memory's size is %d.",
L
Leo Chen 已提交
43
          size, memory_size()));
44 45
}

46 47 48 49
Tensor::Tensor(const proto::VarType::Type& dtype)
    : type_(dtype),
      offset_(0),
      inplace_version_counter_(std::make_shared<TensorInplaceVersion>(0)) {}
50

51 52 53 54
size_t Tensor::memory_size() const {
  return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}

55 56
void* Tensor::mutable_data(const platform::Place& place,
                           proto::VarType::Type type, size_t requested_size) {
57
  type_ = type;
58 59 60 61 62 63
  PADDLE_ENFORCE_GE(
      numel(), 0,
      platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(), "] now"));
64
  size_t size = numel() * SizeOfType(type);
65
  if (requested_size && (requested_size > size)) {
66 67
    size = requested_size;
  }
68 69 70
  /* some versions of boost::variant don't have operator!= */
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + offset_) {
71 72
    // Reset holder first before re-allocate to save memory
    holder_.reset();
73
    holder_ = memory::AllocShared(place, size);
74 75 76 77 78 79
    offset_ = 0;
  }
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 offset_);
}

80 81
void* Tensor::mutable_data(const platform::Place& place,
                           size_t requested_size) {
82 83
  PADDLE_ENFORCE_NOT_NULL(this->holder_, platform::errors::PreconditionNotMet(
                                             "The tensor is not initialized."));
84
  return mutable_data(place, type_, requested_size);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
void* Tensor::mutable_data(const platform::CUDAPlace& place,
                           proto::VarType::Type type,
                           const gpuStream_t& stream) {
  if (!FLAGS_use_stream_safe_cuda_allocator) {
    return mutable_data(place, type);
  }

  type_ = type;
  PADDLE_ENFORCE_GE(
      numel(), 0,
      platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(), "] now"));
  size_t size = numel() * SizeOfType(type);

  /* some versions of boost::variant don't have operator!= */
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + offset_) {
    holder_.reset();
    holder_ = memory::AllocShared(place, size, stream);
    offset_ = 0;
  }
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 offset_);
}
#endif

116 117 118 119 120
Tensor& Tensor::ShareDataWith(const Tensor& src) {
  src.check_memory_size();
  *this = src;
  return *this;
}
121 122 123 124 125 126 127 128 129
Tensor& Tensor::ShareInplaceVersionCounterWith(const Tensor& src) {
  PADDLE_ENFORCE_NOT_NULL(
      inplace_version_counter_,
      platform::errors::PreconditionNotMet(
          "Tensor does not hold inplace_version_counter_."));

  inplace_version_counter_ = src.inplace_version_counter_;
  return *this;
}
130

C
chengduo 已提交
131
Tensor Tensor::Slice(int64_t begin_idx, int64_t end_idx) const {
132
  check_memory_size();
133 134 135 136 137 138 139 140
  PADDLE_ENFORCE_GE(
      begin_idx, 0,
      platform::errors::OutOfRange("The start row index must be greater than 0."
                                   "But received the start index is d%.",
                                   begin_idx));
  PADDLE_ENFORCE_LE(
      end_idx, dims_[0],
      platform::errors::OutOfRange("The end row index is out of bound."));
141 142
  PADDLE_ENFORCE_LT(
      begin_idx, end_idx,
143 144 145 146
      platform::errors::InvalidArgument(
          "The start row index must be less than the end row index."
          "But received the start index = %d, the end index = %d.",
          begin_idx, end_idx));
147 148 149 150 151 152 153 154

  if (dims_[0] == 1) {
    return *this;
  } else {
    size_t base = numel() / dims_[0];
    Tensor dst;
    dst.holder_ = holder_;
    dst.set_layout(layout_);
155
    dst.type_ = type_;
156 157 158 159 160 161 162 163
    DDim dst_dims = dims_;
    dst_dims[0] = end_idx - begin_idx;
    dst.Resize(dst_dims);
    dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
    return dst;
  }
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
std::vector<Tensor> Tensor::Split(int64_t split_size, int64_t axis) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(dims_.size(), 0,
                    platform::errors::OutOfRange(
                        "split expects at least a 1-dimensional tensor"));
  PADDLE_ENFORCE_GE(
      split_size, 0,
      platform::errors::OutOfRange(
          "split expects split_size be non-negative, but got split_size is %d",
          split_size));
  int64_t numel_size = dims_[axis];

  int64_t num_splits = 1;
  if (split_size != 0) {
    num_splits =
        std::max<int64_t>((numel_size + split_size - 1) / split_size, 1);
  }

  std::vector<Tensor> splits(num_splits);
  int64_t last_split_size = split_size - (split_size * num_splits - numel_size);

  for (int64_t i = 0; i < num_splits; ++i) {
    int64_t length = i < num_splits - 1 ? split_size : last_split_size;
    splits[i] = Slice(i * split_size, i * split_size + length);
  }
  return splits;
}

std::vector<Tensor> Tensor::Chunk(int64_t chunks, int64_t axis) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(dims_.size(), 0,
                    platform::errors::OutOfRange(
                        "split expects at least a 1-dimensional tensor"));
  PADDLE_ENFORCE_GE(
      chunks, 0,
      platform::errors::OutOfRange(
          "chunks expects to be greater than 0, but got chunks is %d", chunks));

  int64_t numel_size = dims_[axis];
  int64_t split_size = (numel_size + chunks - 1) / chunks;
  return Split(split_size, axis);
}

207 208 209 210 211 212 213 214
Tensor& Tensor::Resize(const DDim& dims) {
  dims_ = dims;
  return *this;
}

const DDim& Tensor::dims() const { return dims_; }

int64_t Tensor::numel() const { return product(dims_); }
215

216
void Tensor::ResetHolder(std::shared_ptr<memory::Allocation> holder) {
217 218 219 220
  PADDLE_ENFORCE_EQ(
      offset_, 0,
      platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));
221
  if (holder_) {
222 223 224 225
    PADDLE_ENFORCE_LE(
        numel() * SizeOfType(type()) + offset_, holder->size(),
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
226 227 228 229
  }
  holder_ = holder;
}

230
void Tensor::ResetHolderWithType(std::shared_ptr<memory::Allocation> holder,
231
                                 const proto::VarType::Type& type) {
232
  type_ = type;
233
  ResetHolder(holder);
234 235
}

236 237
void Tensor::set_type(const proto::VarType::Type& type) { type_ = type; }

238
}  // namespace framework
Y
Yu Yang 已提交
239
}  // namespace paddle