norm.py 53.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

30
import six
31

Z
zhiboniu 已提交
32 33
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
34

35
from ...framework import get_default_dtype, set_default_dtype, _non_static_mode
C
ceci3 已提交
36

Z
zhiboniu 已提交
37 38
from ..initializer import Constant
from ...framework import ParamAttr
C
ceci3 已提交
39
from ...fluid.data_feeder import check_variable_and_dtype, check_type
Z
zhiboniu 已提交
40
from ...fluid import dygraph_utils
41 42 43 44 45 46

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
47
from ...framework import no_grad
48
from .. import functional as F
49
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
50
from .. import Layer
Z
zhiboniu 已提交
51
from paddle import in_dynamic_mode
52
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
53

54 55
__all__ = []

C
ceci3 已提交
56

Z
zhiboniu 已提交
57
class _InstanceNormBase(Layer):
58
    """
L
Ligoml 已提交
59
    This class is based class for InstanceNorm1D, 2d, 3d.
60

C
cnn 已提交
61
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
62 63
    """

L
Ligoml 已提交
64 65 66 67 68 69 70 71 72 73
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
74 75 76
        super(_InstanceNormBase, self).__init__()

        if weight_attr == False or bias_attr == False:
L
Ligoml 已提交
77 78 79
            assert (
                weight_attr == bias_attr
            ), "weight_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
80 81 82
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
83
        self._num_features = num_features
84 85 86 87 88 89

        if weight_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
L
Ligoml 已提交
90 91 92 93 94 95 96 97
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
98 99 100 101 102 103 104 105 106 107
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

L
Ligoml 已提交
108 109 110
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
111

112
    def extra_repr(self):
L
Ligoml 已提交
113 114 115
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
116

117

C
cnn 已提交
118
class InstanceNorm1D(_InstanceNormBase):
119
    r"""
L
Ligoml 已提交
120
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
121 122 123 124 125 126 127

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
128 129 130 131 132 133 134
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
135

L
Ligoml 已提交
136
Where `H` means height of feature map, `W` means width of feature map.
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
153
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

L
Ligoml 已提交
171
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
172
          instance_norm = paddle.nn.InstanceNorm1D(2)
173 174
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
175
          print(instance_norm_out)
176 177 178 179 180

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
L
Ligoml 已提交
181 182 183 184 185
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
186 187


C
cnn 已提交
188
class InstanceNorm2D(_InstanceNormBase):
189
    r"""
L
Ligoml 已提交
190
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
191 192 193 194 195 196 197 198

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
        
199 200 201 202 203 204 205
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
206

L
Ligoml 已提交
207
Where `H` means height of feature map, `W` means width of feature map.
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

L
Ligoml 已提交
241
          x = paddle.rand((2, 2, 2, 3))
C
cnn 已提交
242
          instance_norm = paddle.nn.InstanceNorm2D(2)
243 244
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
245
          print(instance_norm_out)
246 247 248 249
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
L
Ligoml 已提交
250 251 252
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
253 254


C
cnn 已提交
255
class InstanceNorm3D(_InstanceNormBase):
256
    r"""
L
Ligoml 已提交
257
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
258 259 260 261 262 263 264 265

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
        
266 267 268 269 270 271 272
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
273

L
Ligoml 已提交
274
Where `H` means height of feature map, `W` means width of feature map.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

L
Ligoml 已提交
308
          x = paddle.rand((2, 2, 2, 2, 3))
C
cnn 已提交
309
          instance_norm = paddle.nn.InstanceNorm3D(2)
310 311
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
312
          print(instance_norm_out.numpy)
313 314 315 316
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
L
Ligoml 已提交
317 318 319
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
320 321


Z
zhiboniu 已提交
322
class GroupNorm(Layer):
323 324 325 326 327 328 329 330
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
331
        num_channels(int): The number of channels of input.
332 333 334 335 336 337 338 339 340 341 342 343
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
344 345
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
346 347 348 349 350 351

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
352

353
            import paddle
354

355 356 357
            x = paddle.arange(48, dtype="float32").reshape((2, 6, 2, 2))
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
358

359
            print(group_norm_out)
360 361
    """

L
Ligoml 已提交
362 363 364 365 366 367 368 369 370 371
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
372 373 374 375 376 377
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
378
        if data_format != 'NCHW':
379
            raise ValueError("unsupported data layout:" + data_format)
380 381 382

        param_shape = [self._num_channels]

383 384
        if weight_attr == False:
            self.weight = self.create_parameter(
L
Ligoml 已提交
385 386
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
387 388 389 390 391
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
L
Ligoml 已提交
392 393 394 395 396 397
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
                self._weight_attr != None
                and self._weight_attr.learning_rate == 0.0
            )
398

399
        if bias_attr == False:
L
Ligoml 已提交
400 401 402 403 404 405
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
406 407
            self.bias.stop_gradient = True
        else:
L
Ligoml 已提交
408 409 410 411 412 413
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
                self._bias_attr != None and self._bias_attr.learning_rate == 0.0
            )
414 415

    def forward(self, input):
416
        mean_out = self._helper.create_variable_for_type_inference(
L
Ligoml 已提交
417 418
            dtype=input.dtype, stop_gradient=True
        )
419
        variance_out = self._helper.create_variable_for_type_inference(
L
Ligoml 已提交
420 421
            dtype=input.dtype, stop_gradient=True
        )
422

423
        if in_dygraph_mode():
L
Ligoml 已提交
424 425 426 427 428 429 430 431
            pre_act = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
                "NCHW",
            )
432

L
Ligoml 已提交
433 434 435
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
436 437

        elif _in_legacy_dygraph():
438
            pre_act, _, _ = _legacy_C_ops.group_norm(
439 440 441 442 443 444 445 446
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
447 448
                self._num_groups,
            )
L
Ligoml 已提交
449 450 451
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
452

453 454 455 456 457 458 459 460
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
L
Ligoml 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
474 475 476

        return self._helper.append_activation(group_norm_out, None)

477 478
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
L
Ligoml 已提交
479 480
            self._num_groups, self._num_channels, self._epsilon
        )
481

482

Z
zhiboniu 已提交
483
class LayerNorm(Layer):
484
    r"""
L
Ligoml 已提交
485
    Construct a callable object of the ``LayerNorm`` class.
486 487 488 489 490 491 492 493
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

494
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
495

496
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
497

498
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
499 500 501

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
502
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

L
Ligoml 已提交
534 535
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
536 537
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
538
          print(layer_norm_out)
539 540
    """

L
Ligoml 已提交
541 542 543 544 545 546 547 548
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
L
Ligoml 已提交
565 566
                default_initializer=Constant(1.0),
            )
567 568 569 570

        if bias_attr is False:
            self.bias = None
        else:
L
Ligoml 已提交
571 572 573
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
574 575

    def forward(self, input):
L
Ligoml 已提交
576 577 578 579 580 581 582
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
583

584
    def extra_repr(self):
L
Ligoml 已提交
585 586 587
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
588

589

Z
zhiboniu 已提交
590
class _BatchNormBase(Layer):
591 592 593 594
    """
    BatchNorm base .
    """

L
Ligoml 已提交
595 596 597 598 599 600 601 602 603 604 605
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
606 607 608 609
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
610
        self._use_global_stats = use_global_stats
611 612

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
613 614 615
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
616 617 618 619

        param_shape = [num_features]

        # create parameter
620 621
        if weight_attr == False:
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
622 623 624
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
L
Ligoml 已提交
625 626
                default_initializer=Constant(1.0),
            )
627 628 629 630 631
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
632
                dtype=self._dtype,
L
Ligoml 已提交
633 634 635 636 637 638
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
                self._weight_attr != None
                and self._weight_attr.learning_rate == 0.0
            )
639

640
        if bias_attr == False:
L
Ligoml 已提交
641 642 643 644 645 646 647
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
648 649
            self.bias.stop_gradient = True
        else:
L
Ligoml 已提交
650 651 652 653 654 655 656 657 658
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
                self._bias_attr != None and self._bias_attr.learning_rate == 0.0
            )
659 660 661 662 663 664 665 666

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

L
Ligoml 已提交
667 668 669 670 671 672 673 674 675 676
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
677 678
        self._mean.stop_gradient = True

L
Ligoml 已提交
679 680 681 682 683 684 685 686 687 688
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
689 690 691 692 693 694 695
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
696
        self._name = name
697 698 699 700

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

701 702 703
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

704 705
    def forward(self, input):

706 707
        self._check_data_format(self._data_format)

708 709
        self._check_input_dim(input)

710
        if self.training:
711
            warnings.warn(
L
Ligoml 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
727

728 729
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
L
Ligoml 已提交
730 731
            self._num_features, self._momentum, self._epsilon
        )
732
        if self._data_format != 'NCHW':
733 734 735 736 737
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

738

C
cnn 已提交
739
class BatchNorm1D(_BatchNormBase):
740
    r"""
741 742
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

743 744
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
745 746 747 748
    Calculated as follows:

    ..  math::

749 750 751 752
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
753

754 755
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
756 757 758 759
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
760 761
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
762 763 764 765 766

    The normalization function formula is as follows:

    ..  math::

767 768
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
769

770 771 772
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
773 774 775 776 777 778 779 780

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
781
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
782 783 784 785
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
786
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
787
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
788 789 790
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
791 792
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
793 794 795 796 797 798 799 800 801 802 803
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
    

    Examples:
        .. code-block:: python

          import paddle

L
Ligoml 已提交
804
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
805
          batch_norm = paddle.nn.BatchNorm1D(1)
806 807
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
808
          print(batch_norm_out)
809 810
    """

L
Ligoml 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm1D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
832

833 834 835
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
836 837
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
838
        else:
F
Feiyu Chan 已提交
839
            raise ValueError(
L
Ligoml 已提交
840 841
                'expected NC , NCL, NLC or None for data_format input'
            )
842

843 844
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
L
Ligoml 已提交
845 846 847 848 849
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
850 851


C
cnn 已提交
852
class BatchNorm2D(_BatchNormBase):
853
    r"""
854 855
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

856 857
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
858 859 860 861
    Calculated as follows:

    ..  math::

862 863 864 865
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - 
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
866

867 868
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
869 870 871 872
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
873 874
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
875 876 877 878 879

    The normalization function formula is as follows:

    ..  math::

880 881
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
882

883 884 885
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
886 887 888 889 890 891 892 893

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
894
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
895 896 897 898
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
899
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
900
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
901 902 903
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
904 905
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
906 907 908 909 910 911 912 913 914 915
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

L
Ligoml 已提交
916
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
917
          batch_norm = paddle.nn.BatchNorm2D(1)
918 919
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
920
          print(batch_norm_out)
921 922
    """

923
    def _check_data_format(self, input):
924
        if input == 'NCHW':
925
            self._data_format = input
F
Feiyu Chan 已提交
926 927
        elif input == "NHWC":
            self._data_format = input
928
        else:
F
Feiyu Chan 已提交
929
            raise ValueError('expected NCHW or NHWC for data_format input')
930

931 932
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
L
Ligoml 已提交
933 934 935
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
936 937


C
cnn 已提交
938
class BatchNorm3D(_BatchNormBase):
939
    r"""
940 941
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

942 943
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
944 945 946 947
    Calculated as follows:

    ..  math::

948 949 950 951
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
952

C
ceci3 已提交
953
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
954 955 956 957 958
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
959 960
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
961 962 963 964 965

    The normalization function formula is as follows:

    ..  math::

966 967
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
968

969 970 971
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
972 973 974 975 976 977 978 979

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
980
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
981 982 983 984
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
985
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
986
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
987 988 989
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
990 991
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
992 993 994 995 996 997 998 999 1000 1001
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

L
Ligoml 已提交
1002
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
1003
          batch_norm = paddle.nn.BatchNorm3D(1)
1004 1005
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1006
          print(batch_norm_out)
1007 1008
    """

L
Ligoml 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm3D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1030

1031 1032 1033
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1034 1035
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1036
        else:
F
Feiyu Chan 已提交
1037
            raise ValueError(
L
Ligoml 已提交
1038 1039
                'expected NCDHW, NDHWC or None for data_format input'
            )
1040

1041 1042
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
L
Ligoml 已提交
1043 1044 1045
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1046 1047


1048
class SyncBatchNorm(_BatchNormBase):
1049
    r"""
C
ceci3 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can 
    be used as a normalizer function for other operations, such as conv2d and fully connected 
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    When model in training mode, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1066 1067 1068 1069
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1070 1071 1072 1073 1074

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1075
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance, 
C
ceci3 已提交
1076 1077 1078
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1079 1080
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1081 1082 1083 1084 1085

    The formula of normalization is as follows:
 
    ..  math::

1086 1087 1088
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1089

1090 1091 1092
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
    - :math:`\beta` : trainable shift parameter vector 
C
ceci3 已提交
1093

1094 1095 1096 1097 1098
    Note:
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the 
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of 
        ``list`` to pack the model. 

C
ceci3 已提交
1099 1100 1101 1102 1103 1104 1105
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1106
             is not set, the parameter is initialized with ones. If it is set to False, 
C
ceci3 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. If it is set to False, this layer will not 
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1121 1122
          # required: gpu

C
ceci3 已提交
1123 1124 1125
          import paddle
          import paddle.nn as nn

1126
          x = paddle.to_tensor([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
C
ceci3 已提交
1127 1128

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1129 1130
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1131
              print(hidden1)
1132 1133 1134 1135 1136 1137
              # Tensor(shape=[1, 2, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
              #        [[[[ 0.26824948,  1.09363246],
              #           [ 0.26824948, -1.63013160]],

              #          [[ 0.80956620, -0.66528702],
              #           [-1.27446556,  1.13018656]]]])
C
ceci3 已提交
1138 1139
    """

L
Ligoml 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
        super(SyncBatchNorm, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1160

C
ceci3 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1171
    def forward(self, x):
C
ceci3 已提交
1172
        self._check_data_format()
C
ceci3 已提交
1173 1174 1175 1176 1177 1178 1179 1180
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
1181
        if in_dygraph_mode():
1182
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
L
Ligoml 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                self._momentum,
                self._epsilon,
                self._data_format,
                not self.training,
                False,
                False,
                False,
            )
1196 1197 1198
            return sync_batch_norm_out

        elif in_dynamic_mode():
L
Ligoml 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1217
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
L
Ligoml 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1227 1228
            return sync_batch_norm_out

L
Ligoml 已提交
1229 1230 1231
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1232 1233 1234 1235 1236

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1237
            "data_layout": self._data_format,
C
ceci3 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
L
Ligoml 已提交
1249
            "Variance": [self._variance],
C
ceci3 已提交
1250 1251 1252
        }

        saved_mean = self._helper.create_variable_for_type_inference(
L
Ligoml 已提交
1253 1254
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1255
        saved_variance = self._helper.create_variable_for_type_inference(
L
Ligoml 已提交
1256 1257
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1258
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
L
Ligoml 已提交
1259 1260
            self._dtype
        )
C
ceci3 已提交
1261 1262 1263 1264 1265 1266

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
L
Ligoml 已提交
1267
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1268 1269
        }

L
Ligoml 已提交
1270 1271 1272
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1273
        return sync_batch_norm_out
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1292
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1293 1294 1295 1296 1297
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
L
Ligoml 已提交
1298 1299 1300 1301 1302
            if (
                layer._weight_attr != None
                and not isinstance(layer._weight_attr, bool)
                and layer._weight_attr.name != None
            ):
C
ceci3 已提交
1303
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
L
Ligoml 已提交
1304 1305 1306 1307 1308
            if (
                layer._bias_attr != None
                and not isinstance(layer._bias_attr, bool)
                and layer._bias_attr.name != None
            ):
C
ceci3 已提交
1309 1310
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

L
Ligoml 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1320 1321 1322 1323 1324 1325 1326 1327

            if layer._weight_attr != False and layer._bias_attr != False:
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1328
        for name, sublayer in layer.named_children():
L
Ligoml 已提交
1329 1330 1331
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1332 1333
        del layer
        return layer_output
1334 1335


Z
zhiboniu 已提交
1336
class LocalResponseNorm(Layer):
1337
    """
L
Ligoml 已提交
1338 1339
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1340

L
Ligoml 已提交
1341
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1342

L
Ligoml 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1358

L
Ligoml 已提交
1359 1360 1361
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1362

L
Ligoml 已提交
1363
    Examples:
1364

L
Ligoml 已提交
1365
    .. code-block:: python
1366

L
Ligoml 已提交
1367 1368 1369 1370 1371 1372 1373
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1374

L
Ligoml 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1384 1385 1386 1387 1388 1389 1390 1391 1392
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1402
        return out
1403 1404 1405

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
L
Ligoml 已提交
1406 1407
            self.size, self.alpha, self.beta, self.k
        )
1408
        if self.data_format != 'NCHW':
1409 1410 1411 1412
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str