im2col.cu 14.1 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15 16
#include "paddle/operators/math/im2col.h"
#include "paddle/platform/cuda_helper.h"
H
hedaoyuan 已提交
17 18

namespace paddle {
19
namespace operators {
20
namespace math {
H
hedaoyuan 已提交
21 22

template <class T>
H
hedaoyuan 已提交
23 24 25 26
__global__ void im2col(const T* data_im, int num_outs, int height, int width,
                       int filter_height, int filter_width, int stride_height,
                       int stride_width, int padding_height, int padding_width,
                       int output_height, int output_width, T* data_col) {
H
hedaoyuan 已提交
27
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
H
hedaoyuan 已提交
28 29 30 31 32 33 34 35
  if (index < num_outs) {
    int w_out = index % output_width;
    index /= output_width;
    int h_out = index % output_height;
    int channel_in = index / output_height;
    int channel_out = channel_in * filter_height * filter_width;
    int h_in = h_out * stride_height;
    int w_in = w_out * stride_width;
H
hedaoyuan 已提交
36

H
hedaoyuan 已提交
37 38 39
    data_col += (channel_out * output_height + h_out) * output_width + w_out;
    for (int i = 0; i < filter_height; ++i) {
      for (int j = 0; j < filter_width; ++j) {
H
hedaoyuan 已提交
40 41
        int rIdx = int(h_in + i);
        int cIdx = int(w_in + j);
H
hedaoyuan 已提交
42 43 44 45
        if ((rIdx - (int)padding_height) >= (int)height ||
            (rIdx - (int)padding_height) < 0 ||
            (cIdx - (int)padding_width) >= (int)width ||
            (cIdx - (int)padding_width) < 0) {
H
hedaoyuan 已提交
46 47
          *data_col = 0;
        } else {
H
hedaoyuan 已提交
48 49
          rIdx = rIdx + channel_in * height - padding_height;
          cIdx = cIdx - padding_width;
H
hedaoyuan 已提交
50 51
          *data_col = data_im[rIdx * width + cIdx];
        }
H
hedaoyuan 已提交
52
        data_col += output_height * output_width;
H
hedaoyuan 已提交
53 54 55 56 57 58
      }
    }
  }
}

/*
H
hedaoyuan 已提交
59 60 61
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
62 63
 */
template <class T>
H
hedaoyuan 已提交
64
class Im2ColFunctor<kCFO, platform::GPUPlace, T> {
H
hedaoyuan 已提交
65
 public:
H
hedaoyuan 已提交
66 67
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
68
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
69 70
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
H
hedaoyuan 已提交
71

H
hedaoyuan 已提交
72 73 74 75 76 77 78 79 80 81 82 83
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];

    int num_outputs = input_channels * output_height * output_width;
    int blocks = (num_outputs + 1024 - 1) / 1024;
    int block_x = 512;
    int block_y = (blocks + 512 - 1) / 512;
H
hedaoyuan 已提交
84
    dim3 threads(1024, 1);
H
hedaoyuan 已提交
85
    dim3 grid(block_x, block_y);
86
    // TODO(hedaoyuan): launch kernel on specified stream
H
hedaoyuan 已提交
87 88 89 90
    im2col<T><<<grid, threads>>>(
        im.data<T>(), num_outputs, input_height, input_width, filter_height,
        filter_width, stride_height, stride_width, padding_height,
        padding_width, output_height, output_width, col.data<T>());
H
hedaoyuan 已提交
91 92 93 94 95
  }
};

template <class T>
__global__ void col2im(size_t n, const T* data_col, size_t height, size_t width,
H
hedaoyuan 已提交
96 97 98 99 100
                       size_t channels, size_t filter_height,
                       size_t filter_width, size_t stride_height,
                       size_t stride_width, size_t padding_height,
                       size_t padding_width, size_t output_height,
                       size_t output_width, T* data_im) {
H
hedaoyuan 已提交
101 102 103 104 105 106 107
  size_t index =
      (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < n) {
    T val = 0;
    int w = int(index % width);
    int h = int((index / width) % height);
    int c = int(index / (width * height));
H
hedaoyuan 已提交
108 109 110 111
    if ((w - (int)padding_width) >= 0 &&
        (w - (int)padding_width) < (width - 2 * padding_width) &&
        (h - (int)padding_height) >= 0 &&
        (h - padding_height) < (height - 2 * padding_height)) {
H
hedaoyuan 已提交
112
      // compute the start and end of the output
H
hedaoyuan 已提交
113 114 115 116 117 118 119 120 121
      int w_col_start = (w < (int)filter_width)
                            ? 0
                            : (w - int(filter_width)) / (int)stride_width + 1;
      int w_col_end =
          min((int)(w / (int)stride_width + 1), (int)(output_width));
      int h_col_start = (h < (int)filter_height)
                            ? 0
                            : (h - (int)filter_height) / (int)stride_height + 1;
      int h_col_end = min(int(h / stride_height + 1), int(output_height));
H
hedaoyuan 已提交
122 123 124
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
          // the col location: [c * width * height + h_out, w_out]
H
hedaoyuan 已提交
125 126 127 128 129
          int c_col = int(c * filter_height * filter_width) +
                      (h - h_col * (int)stride_height) * (int)filter_width +
                      (w - w_col * (int)stride_width);
          val +=
              data_col[(c_col * output_height + h_col) * output_width + w_col];
H
hedaoyuan 已提交
130 131
        }
      }
H
hedaoyuan 已提交
132 133 134 135 136
      h -= padding_height;
      w -= padding_width;
      data_im[c * ((width - 2 * padding_width) *
                   (height - 2 * padding_height)) +
              h * (width - 2 * padding_width) + w] += val;
H
hedaoyuan 已提交
137 138 139 140 141
    }
  }
}

/*
H
hedaoyuan 已提交
142 143 144
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
145 146
 */
template <class T>
H
hedaoyuan 已提交
147
class Col2ImFunctor<kCFO, platform::GPUPlace, T> {
H
hedaoyuan 已提交
148
 public:
H
hedaoyuan 已提交
149 150
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
151
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
152 153 154 155 156 157 158 159 160 161
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);

    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
H
hedaoyuan 已提交
162

H
hedaoyuan 已提交
163 164
    size_t num_kernels = input_channels * (input_height + 2 * padding_height) *
                         (input_width + 2 * padding_width);
H
hedaoyuan 已提交
165

H
hedaoyuan 已提交
166 167 168
    size_t blocks = (num_kernels + 1024 - 1) / 1024;
    size_t block_x = 512;
    size_t block_y = (blocks + 512 - 1) / 512;
H
hedaoyuan 已提交
169
    dim3 threads(1024, 1);
H
hedaoyuan 已提交
170
    dim3 grid(block_x, block_y);
H
hedaoyuan 已提交
171 172 173

    // To avoid involving atomic operations, we will launch one kernel per
    // bottom dimension, and then in the kernel add up the top dimensions.
174
    // TODO(hedaoyuan): launch kernel on specified stream
H
hedaoyuan 已提交
175 176 177 178 179
    col2im<T><<<grid, threads>>>(
        num_kernels, col.data<T>(), input_height + 2 * padding_height,
        input_width + 2 * padding_width, input_channels, filter_height,
        filter_width, stride_height, stride_width, padding_height,
        padding_width, output_height, output_width, im.data<T>());
H
hedaoyuan 已提交
180 181 182
  }
};

H
hedaoyuan 已提交
183 184 185 186
template class Im2ColFunctor<kCFO, platform::GPUPlace, float>;
template class Im2ColFunctor<kCFO, platform::GPUPlace, double>;
template class Col2ImFunctor<kCFO, platform::GPUPlace, float>;
template class Col2ImFunctor<kCFO, platform::GPUPlace, double>;
H
hedaoyuan 已提交
187 188

template <class T>
H
hedaoyuan 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
__global__ void im2colOCF(const T* im_data, T* col_data, int input_channels,
                          int input_height, int input_width, int filter_height,
                          int filter_width, int stride_height, int stride_width,
                          int padding_height, int padding_width,
                          int output_height, int output_width) {
  int swid = blockIdx.x;
  int shid = blockIdx.y;
  for (int channelid = threadIdx.z; channelid < input_channels;
       channelid += blockDim.z) {
    for (int idy = threadIdx.y; idy < filter_height; idy += blockDim.y) {
      for (int idx = threadIdx.x; idx < filter_width; idx += blockDim.x) {
        int width_offset = idx + swid * stride_width - padding_width;
        int height_offset = idy + shid * stride_height - padding_height;
        int im_offset = width_offset + height_offset * input_width +
                        channelid * input_height * input_width;
H
hedaoyuan 已提交
204

H
hedaoyuan 已提交
205 206 207 208
        int col_offset = idx + idy * filter_width +
                         channelid * filter_height * filter_width +
                         (shid * output_width + swid) *
                             (input_channels * filter_height * filter_width);
H
hedaoyuan 已提交
209

H
hedaoyuan 已提交
210 211 212
        if (height_offset >= input_height || height_offset < 0 ||
            width_offset >= input_width || width_offset < 0) {
          col_data[col_offset] = T(0);
H
hedaoyuan 已提交
213
        } else {
H
hedaoyuan 已提交
214
          col_data[col_offset] = im_data[im_offset];
H
hedaoyuan 已提交
215 216 217 218 219 220 221
        }
      }
    }
  }
}

/*
H
hedaoyuan 已提交
222 223 224
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
225 226
 */
template <class T>
H
hedaoyuan 已提交
227
class Im2ColFunctor<kOCF, platform::GPUPlace, T> {
H
hedaoyuan 已提交
228
 public:
H
hedaoyuan 已提交
229 230
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
231
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
232 233 234 235 236 237 238 239 240
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];
H
hedaoyuan 已提交
241

H
hedaoyuan 已提交
242 243 244 245 246 247 248 249 250 251 252
    int block_dim_x = 0;
    int block_dim_y = 0;
    if (filter_height <= 4 && filter_width <= 4) {
      block_dim_x = 4;
      block_dim_y = 4;
    } else if (filter_height <= 8 && filter_width <= 8) {
      block_dim_x = 8;
      block_dim_y = 8;
    } else if (filter_height <= 16 && filter_width <= 16) {
      block_dim_x = 16;
      block_dim_y = 16;
H
hedaoyuan 已提交
253
    } else {
H
hedaoyuan 已提交
254 255
      block_dim_x = 32;
      block_dim_y = 32;
H
hedaoyuan 已提交
256 257
    }

H
hedaoyuan 已提交
258 259 260 261
    int block_dim_z = 1024 / block_dim_x / block_dim_y;
    dim3 threads(block_dim_x, block_dim_y,
                 std::min(block_dim_z, input_channels));
    dim3 grid(output_width, output_height);
262
    // TODO(hedaoyuan): launch kernel on specified stream
H
hedaoyuan 已提交
263 264 265 266
    im2colOCF<T><<<grid, threads>>>(
        im.data<T>(), col.data<T>(), input_channels, input_height, input_width,
        filter_height, filter_width, stride_height, stride_width,
        padding_height, padding_width, output_height, output_width);
H
hedaoyuan 已提交
267 268 269 270
  }
};

template <class T>
H
hedaoyuan 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
__global__ void col2imOCF(T* im_data, const T* col_data, int input_channels,
                          int input_height, int input_width, int filter_height,
                          int filter_width, int stride_height, int stride_width,
                          int padding_height, int padding_width,
                          int output_height, int output_width) {
  int swid = blockIdx.x;
  int shid = blockIdx.y;
  for (int channelid = threadIdx.z; channelid < input_channels;
       channelid += blockDim.z) {
    for (int idy = threadIdx.y; idy < filter_height; idy += blockDim.y) {
      for (int idx = threadIdx.x; idx < filter_width; idx += blockDim.x) {
        int width_offset = idx + swid * stride_width - padding_width;
        int height_offset = idy + shid * stride_height - padding_height;
        int im_offset = width_offset + height_offset * input_width +
                        channelid * input_height * input_width;
H
hedaoyuan 已提交
286

H
hedaoyuan 已提交
287 288 289 290
        int col_offset = idx + idy * filter_width +
                         channelid * filter_height * filter_width +
                         (shid * output_width + swid) *
                             (input_channels * filter_height * filter_width);
H
hedaoyuan 已提交
291

H
hedaoyuan 已提交
292 293 294 295
        if (height_offset >= 0 && height_offset < input_height &&
            width_offset >= 0 && width_offset < input_width) {
          paddle::platform::CudaAtomicAdd(im_data + im_offset,
                                          col_data[col_offset]);
H
hedaoyuan 已提交
296 297 298 299 300 301 302
        }
      }
    }
  }
}

/*
H
hedaoyuan 已提交
303 304 305
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
306 307
 */
template <class T>
H
hedaoyuan 已提交
308
class Col2ImFunctor<kOCF, platform::GPUPlace, T> {
H
hedaoyuan 已提交
309
 public:
H
hedaoyuan 已提交
310 311
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
312
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
313 314 315 316 317 318 319 320 321
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];
H
hedaoyuan 已提交
322

H
hedaoyuan 已提交
323 324 325 326 327 328 329 330 331 332 333
    int block_dim_x = 0;
    int block_dim_y = 0;
    if (filter_height <= 4 && filter_width <= 4) {
      block_dim_x = 4;
      block_dim_y = 4;
    } else if (filter_height <= 8 && filter_width <= 8) {
      block_dim_x = 8;
      block_dim_y = 8;
    } else if (filter_height <= 16 && filter_width <= 16) {
      block_dim_x = 16;
      block_dim_y = 16;
H
hedaoyuan 已提交
334
    } else {
H
hedaoyuan 已提交
335 336
      block_dim_x = 32;
      block_dim_y = 32;
H
hedaoyuan 已提交
337 338
    }

H
hedaoyuan 已提交
339 340 341 342
    int block_dim_z = 1024 / block_dim_x / block_dim_y;
    dim3 threads(block_dim_x, block_dim_y,
                 std::min(block_dim_z, input_channels));
    dim3 grid(output_width, output_height);
343 344
    // TODO(hedaoyuan): launch kernel on specified stream
    col2imOCF<T><<<grid, threads>>>(
H
hedaoyuan 已提交
345 346 347
        im.data<T>(), col.data<T>(), input_channels, input_height, input_width,
        filter_height, filter_width, stride_height, stride_width,
        padding_height, padding_width, output_height, output_width);
H
hedaoyuan 已提交
348 349 350
  }
};

H
hedaoyuan 已提交
351 352 353 354
template class Im2ColFunctor<kOCF, platform::GPUPlace, float>;
template class Im2ColFunctor<kOCF, platform::GPUPlace, double>;
template class Col2ImFunctor<kOCF, platform::GPUPlace, float>;
template class Col2ImFunctor<kOCF, platform::GPUPlace, double>;
H
hedaoyuan 已提交
355

356
}  // namespace math
357
}  // namespace operators
H
hedaoyuan 已提交
358
}  // namespace paddle