api_impl.cc 10.8 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/inference/api/timer.h"
26 27 28
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
29 30 31

namespace paddle {
namespace {
D
dzhwinter 已提交
32
using paddle::inference::Timer;
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

42 43 44 45
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
46
      if (feeds_.size() <= static_cast<size_t>(idx)) {
47 48 49 50 51 52
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
53
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
54 55 56 57 58 59 60
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
61 62
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
63
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
64
#if !defined(_WIN32)
65 66 67 68 69 70 71 72
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
73
#endif
74

Y
Yan Chunwei 已提交
75
  if (config_.use_gpu) {
X
Xin Pan 已提交
76 77 78 79
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
80 81 82
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
83
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
84 85 86 87 88
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
89 90 91 92 93 94
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
95 96
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
107

X
Xin Pan 已提交
108
  ctx_ = executor_->Prepare(*inference_program_, 0);
109 110
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
111

X
Xin Pan 已提交
112
  // Get the feed_target_names and fetch_target_names
113
  PrepareFeedFetch();
X
Xin Pan 已提交
114 115 116
  return true;
}

117
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
118
#if !defined(_WIN32)
119 120 121 122
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
123
#endif
124 125 126
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
127
}
128

Y
Yan Chunwei 已提交
129
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
130 131
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
132 133 134 135
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
136
  std::vector<framework::LoDTensor> feeds;
137 138
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
139 140 141 142 143
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
144
  VLOG(4) << "Run prepared context";
145 146 147
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
                                false /* don't create variable eatch time */);
148
  VLOG(4) << "Finish prepared context";
149 150
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
151
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
152 153 154 155 156 157
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
158
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
159
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
160 161
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

162
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
163
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
164 165
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
166 167 168 169
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
170 171
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
172
#endif
X
Xin Pan 已提交
173 174
}

Y
Yan Chunwei 已提交
175
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
176
                                    framework::Scope *scope) {
X
Xin Pan 已提交
177
  VLOG(3) << "Predictor::set_feed";
178
  if (inputs.size() != feeds_.size()) {
179 180
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
181 182
    return false;
  }
183
  for (size_t i = 0; i < inputs.size(); ++i) {
184 185
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
186 187
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
188
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
189
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
190
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
191 192 193 194 195 196
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
197
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
198
                inputs[i].data.length());
Y
Yan Chunwei 已提交
199 200 201 202 203 204
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
205 206
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
207
      idx = feed_names_[inputs[i].name];
208 209 210 211
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
212 213 214
  }
  return true;
}
L
luotao1 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
  std::vector<int> shape;
  auto dims_i = fetch.dims();
  auto lod = fetch.lod();
  const T *output_ptr = fetch.data<T>();
  auto num = fetch.numel();
  std::vector<T> data;
  if (0 == lod.size()) {
    std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
    for (int j = 0; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
    }
  } else {
    // for batch detection
    // image[0] -> output[0] shape {145, 6}
    // image[1] -> output[1] shape {176, 6}
    // then,
    // the batch output shape {321, 6}
    // the lod {{0, 145, 321}}
    // so we should append output[0] to {176, 6}
    size_t max_dim = 0;
    for (size_t j = 1; j < lod[0].size(); j++) {
      max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
    }
    size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
    if (max_dim > 0) {
      data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
    }
    for (size_t j = 1; j < lod[0].size(); j++) {
      size_t start = lod[0][j - 1] * common_dim;
      size_t end = lod[0][j] * common_dim;
      if (end > start) {
        std::copy(output_ptr + start, output_ptr + end,
                  data.begin() + (j - 1) * max_dim * common_dim);
      }
    }
    shape.push_back(lod[0].size() - 1);
    shape.push_back(max_dim);
    for (int j = 1; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
    }
  }

  output->shape = shape;
  auto &buffer = output->data;
  if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
    buffer.Resize(sizeof(T) * data.size());
  }
  std::memcpy(buffer.data(), data.data(), buffer.length());
  // copy LoD
  for (const auto &level : fetch.lod()) {
    output->lod.emplace_back(level);
  }
}
X
Xin Pan 已提交
271

272 273
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
274
  VLOG(3) << "Predictor::get_fetch";
275 276 277
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
278 279
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
280
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
281 282 283 284 285 286 287 288
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
289
    } else {
L
luotao1 已提交
290
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
291
    }
X
Xin Pan 已提交
292 293 294 295
  }
  return true;
}

296
template <>
297 298
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
299 300 301
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
302
    PADDLE_ENFORCE_GT(
303
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
304
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
305
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
306 307 308 309 310 311 312 313 314 315
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
316 317
  }

Y
Yan Chunwei 已提交
318
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
319
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
320 321
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
322
#ifdef __clang__
J
Jiabin Yang 已提交
323
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
324 325
  return predictor;
#else
326
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
327
#endif
X
Xin Pan 已提交
328 329 330
}

}  // namespace paddle