elementwise_mul_op.cu 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16 17

namespace ops = paddle::operators;
W
Wu Yi 已提交
18
namespace plat = paddle::platform;
19

20 21 22
namespace paddle {
namespace operators {

23 24 25 26 27
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
28 29 30 31 32
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
33 34
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
Y
YuanRisheng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47
    if (x_var->IsType<framework::SelectedRows>()) {
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
      LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
48

Y
YuanRisheng 已提交
49 50 51 52
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
53 54
      pten::MultiplyKernel<T>(cuda_ctx, *pt_x.get(), *pt_y.get(), axis,
                              pt_z.get());
Y
YuanRisheng 已提交
55 56 57 58 59 60
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
61 62 63 64 65
  }
};

template <typename DeviceContext, typename T>
typename std::enable_if<
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  const auto& dev_ctx =
      ctx.template device_context<platform::CUDADeviceContext>();
  const auto place = ctx.GetPlace();

  if (dx != nullptr && dy != nullptr) {
    dx->mutable_data<T>(place);
    if (dx->IsSharedBufferWith(*dout)) {
      dx->clear();
      dx->mutable_data<T>(x->dims(), place);
    }
    std::vector<const framework::Tensor*> ins = {dout, y, x};
    GetGradXAndYOut<ElementwiseType::kBinary, T>(
        dev_ctx, place, axis, ins, dout, dx, dy, MulGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    dx->mutable_data<T>(place);
    if (dx->IsSharedBufferWith(*dout)) {
      dx->clear();
      dx->mutable_data<T>(x->dims(), place);
    }
    std::vector<const framework::Tensor*> ins = {dout, y};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dx, MulGradFunctor<T>());
  } else if (dx == nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {dout, x};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dy, MulGradFunctor<T>());
  }
99
}
100 101 102 103

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
104
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
105 106 107 108
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
109
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
110
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
111 112
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
113
REGISTER_OP_CUDA_KERNEL(
114
    elementwise_mul_grad,
W
Wu Yi 已提交
115 116 117 118
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
119
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
120
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
121 122 123 124
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
125 126 127 128 129
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
130
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
131
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
132
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
133
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
134
                                        plat::complex<float>>,
135
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
136
                                        plat::complex<double>>);
137 138 139 140 141 142 143 144 145 146 147 148
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);