test_callback_reduce_lr_on_plateau.py 3.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
import paddle.vision.transforms as T
from paddle import Model
from paddle.metric import Accuracy
from paddle.nn.layer.loss import CrossEntropyLoss
22 23 24
from paddle.static import InputSpec
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
L
LielinJiang 已提交
25 26 27 28 29 30 31 32 33


# Accelerate unittest
class CustomMnist(MNIST):
    def __len__(self):
        return 8


class TestReduceLROnPlateau(unittest.TestCase):
W
Weilong Wu 已提交
34
    def test_reduce_lr_on_plateau(self):
L
LielinJiang 已提交
35 36 37 38
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = CustomMnist(mode='train', transform=transform)
        val_dataset = CustomMnist(mode='test', transform=transform)
        net = LeNet()
39 40 41
        optim = paddle.optimizer.Adam(
            learning_rate=0.001, parameters=net.parameters()
        )
L
LielinJiang 已提交
42 43 44 45
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        model = Model(net, inputs=inputs, labels=labels)
        model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()])
46 47 48 49 50 51 52 53 54 55 56 57
        callbacks = paddle.callbacks.ReduceLROnPlateau(
            patience=1, verbose=1, cooldown=1
        )
        model.fit(
            train_dataset,
            val_dataset,
            batch_size=8,
            log_freq=1,
            save_freq=10,
            epochs=10,
            callbacks=[callbacks],
        )
L
LielinJiang 已提交
58

W
Weilong Wu 已提交
59
    def test_warn_or_error(self):
L
LielinJiang 已提交
60 61 62 63 64 65 66 67 68
        with self.assertRaises(ValueError):
            paddle.callbacks.ReduceLROnPlateau(factor=2.0)
        # warning
        paddle.callbacks.ReduceLROnPlateau(mode='1', patience=3, verbose=1)

        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = CustomMnist(mode='train', transform=transform)
        val_dataset = CustomMnist(mode='test', transform=transform)
        net = LeNet()
69 70 71
        optim = paddle.optimizer.Adam(
            learning_rate=0.001, parameters=net.parameters()
        )
L
LielinJiang 已提交
72 73 74 75
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        model = Model(net, inputs=inputs, labels=labels)
        model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()])
76 77 78 79 80 81 82 83 84 85 86 87
        callbacks = paddle.callbacks.ReduceLROnPlateau(
            monitor='miou', patience=3, verbose=1
        )
        model.fit(
            train_dataset,
            val_dataset,
            batch_size=8,
            log_freq=1,
            save_freq=10,
            epochs=1,
            callbacks=[callbacks],
        )
L
LielinJiang 已提交
88 89

        optim = paddle.optimizer.Adam(
90
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
91
                [0.001, 0.0001], [5, 10, 10]
92 93 94
            ),
            parameters=net.parameters(),
        )
L
LielinJiang 已提交
95 96

        model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()])
97 98 99 100 101 102 103 104 105 106 107 108
        callbacks = paddle.callbacks.ReduceLROnPlateau(
            monitor='acc', mode='max', patience=3, verbose=1, cooldown=1
        )
        model.fit(
            train_dataset,
            val_dataset,
            batch_size=8,
            log_freq=1,
            save_freq=10,
            epochs=3,
            callbacks=[callbacks],
        )
L
LielinJiang 已提交
109 110 111 112


if __name__ == '__main__':
    unittest.main()