test_concat_op.py 7.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
22 23


24
class TestConcatOp(OpTest):
25
    def setUp(self):
26
        self.op_type = "concat"
27
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
28 29 30
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
31 32 33 34 35 36
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
37 38
        self.outputs = {
            'Out': np.concatenate(
39
                (self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
40
        }
41

42 43 44
    def get_dtype(self):
        return "float32"

45 46 47
    def test_check_output(self):
        self.check_output()

48 49
    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
C
chengduoZH 已提交
50 51 52 53
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')

    def init_test_data(self):
54 55 56
        self.x0 = np.random.random((2, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
57 58 59
        self.axis = 1


60
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
61
    def init_test_data(self):
62 63 64
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
65
        self.axis = 1
66

67

68 69
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
70 71 72
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
73 74 75 76 77 78
        self.axis = 1

    def test_check_grad(self):
        pass


79 80
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
81 82 83
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
84 85 86 87 88 89
        self.axis = 0

    def test_check_grad(self):
        pass


90 91
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
92 93 94
        self.x0 = np.random.random((2, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
95 96 97
        self.axis = -3


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis)
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
#----------------Concat Fp16----------------


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)

152

153
class TestConcatOpError(unittest.TestCase):
154 155
    def test_errors(self):
        with program_guard(Program(), Program()):
156 157 158 159 160
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
161
                np.array([[-1]]), [[1]], fluid.CPUPlace())
162 163 164
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
165
            # The input dtype of concat_op must be float16(only support on GPU), float32, float64, int32, int64.
166 167 168 169 170 171
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            fluid.layers.concat([x6, x7])
172

173 174 175 176 177 178 179
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)


180
class TestConcatAPI(unittest.TestCase):
181 182 183 184 185 186 187 188
    def test_api(self):
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
189 190
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
191
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
192 193
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
194 195

        exe = fluid.Executor(place=fluid.CPUPlace())
196
        [res_1, res_2, res_3] = exe.run(
197 198 199 200
            fluid.default_main_program(),
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
201
            fetch_list=[out_1, out_2, out_3])
202 203
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
204
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
205

206

207 208
if __name__ == '__main__':
    unittest.main()