test_backward.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
17 18 19
import paddle.static as static
import paddle

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import numpy as np


class BackwardNet(object):
    """
    Abstract Base Class.
    All Net inherited this Class should implement two functions:
        build_model: build net to test the logic of backward
        init_data: fake input data to test all programs.
    """

    def __init__(self):
        self.stop_gradient_grad_vars = set()
        self.no_grad_vars = set()
        self.params_names = set()
        self.op_path = []

    def build_model(self):
        """
        Build net to test the logic of backward.
        :return: loss
        """
        raise NotImplementedError

    def init_data(self):
        """
        Fake input data to test all programs.
        :return: dict, {'var_name': var_data}
        """
        raise NotImplementedError
50 51


52
class TestBackward(unittest.TestCase):
53 54 55 56 57 58
    """
    All related TestClass should inherit this class,
    and only implement test_backward function.
    """

    def _check_all(self, net):
59 60 61 62 63
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
64 65 66 67 68 69
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
70 71
            loss = net.build_model()
            self._check_backward(loss, main)
72 73 74

            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)
75 76 77 78 79 80 81 82 83 84
            exe.run(startup)
            exe.run(feed=net.init_data())

    def _check_backward(self, loss, main_program):
        global_block_idx = self.global_block_idx
        params_grads = self._check_params_grad(loss)
        # 1.1 get_stop_gradients
        no_grad_dict = self._check_stop_gradient(main_program)
        # 1.2 find_op_path
        op_path, block_no_grad_set = self._check_op_path(
85 86
            main_program.block(global_block_idx), [loss], [], no_grad_dict
        )
87 88
        # 1.3 _find_no_grad_vars
        no_grad_vars = self._check_find_no_grad_vars(
89 90 91 92 93
            main_program.block(global_block_idx),
            op_path,
            [loss],
            block_no_grad_set,
        )
94 95 96
        # update no_grad_dict
        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[global_block_idx].update(
97 98
            list(map(fluid.backward._append_grad_suffix_, block_no_grad_set))
        )
99 100

    def _check_params_grad(self, loss, parameter_list=None, no_grad_set=None):
101 102 103
        params_grads = fluid.backward.append_backward(
            loss, parameter_list, no_grad_set
        )
104
        params_names = set(
105 106
            [param_var.name for (param_var, grad_var) in params_grads]
        )
107 108 109 110 111 112 113
        self.assertSetEqual(params_names, self.net.params_names)

        return params_grads

    def _check_stop_gradient(self, program):
        no_grad_dict = fluid.backward._get_stop_gradients_(program)
        if no_grad_dict is not None and isinstance(no_grad_dict, dict):
114 115 116 117
            self.assertSetEqual(
                no_grad_dict[self.global_block_idx],
                self.net.stop_gradient_grad_vars,
            )
118 119 120 121 122 123 124 125

        return no_grad_dict

    def _check_op_path(self, root_block, outputs, inputs=[], no_grad_dict=None):
        if no_grad_dict is None or not isinstance(no_grad_dict, dict):
            block_no_grad_set = None
        else:
            block_no_grad_set = set(
126 127 128 129 130 131 132 133
                map(
                    fluid.backward._strip_grad_suffix_,
                    no_grad_dict[self.global_block_idx],
                )
            )
        op_path = fluid.backward._find_op_path_(
            root_block, outputs, inputs, block_no_grad_set
        )
134 135 136 137 138
        op_types = [op.type for op in op_path]
        self.assertListEqual(op_types, self.net.op_path)

        return op_path, block_no_grad_set

139 140 141
    def _check_find_no_grad_vars(
        self, root_block, op_path, targets, block_no_grad_set
    ):
142
        no_grad_vars = fluid.backward._find_no_grad_vars(
143 144
            root_block, op_path, targets, block_no_grad_set
        )
145 146 147 148
        self.assertSetEqual(no_grad_vars, self.net.no_grad_vars)

        return no_grad_vars

149
    def _check_error_param_list(self, net, parameter_list):
150 151 152 153 154
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
155 156 157 158 159 160 161 162 163 164 165 166
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, parameter_list=parameter_list)
            exe.run(startup)
            exe.run(feed=net.init_data())

167
    def _check_error_no_grad_set(self, net, no_grad_set):
168 169 170 171 172
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
173 174 175 176 177 178 179 180 181 182 183 184
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, no_grad_set=no_grad_set)
            exe.run(startup)
            exe.run(feed=net.init_data())

185 186 187

class SimpleNet(BackwardNet):
    def __init__(self):
188
        super().__init__()
189 190 191 192 193 194 195 196
        self.stop_gradient_grad_vars = set(
            [
                u'x_no_grad@GRAD',
                u'x2_no_grad@GRAD',
                u'x3_no_grad@GRAD',
                u'label_no_grad@GRAD',
            ]
        )
197 198 199 200 201 202 203 204 205 206 207
        self.no_grad_vars = set()
        self.params_names = set([u'w2v', u'fc_predict.b_0', u'fc_w'])
        self.op_path = [
            u'lookup_table_v2',
            u'lookup_table_v2',  # embedding
            u'elementwise_add',  # merge
            u'mul',
            u'elementwise_add',
            u'softmax',  # fc
            u'elementwise_sub',
            u'square',
208
            u'reduce_mean',
209 210 211 212 213 214 215 216 217 218 219 220 221
        ]  # loss
        self.shape = [16, 50]

    def init_data(self):
        assert len(self.shape) == 2
        x = np.random.randint(0, 90, self.shape).astype('int64')
        x2 = np.random.randint(0, 90, self.shape).astype('int64')
        x3 = np.random.randint(0, 90, self.shape).astype('int64')
        label = np.random.random([self.shape[0], 1]).astype('float32')
        return {
            'x_no_grad': x,
            'x2_no_grad': x2,
            'x3_no_grad': x3,
222
            'label_no_grad': label,
223 224 225 226 227 228 229
        }

    def build_model(self):
        # stop_gradient = True in input
        x = fluid.data(name='x_no_grad', shape=self.shape, dtype='int64')
        x2 = fluid.data(name='x2_no_grad', shape=self.shape, dtype='int64')
        x3 = fluid.data(name='x3_no_grad', shape=self.shape, dtype='int64')
230 231 232
        label = fluid.data(
            name='label_no_grad', shape=[self.shape[0], 1], dtype='float32'
        )
233 234
        # shared layer, the grad of 'w2v' will be summed and renamed.
        # To test  _addup_repetitive_outputs_
235 236 237 238 239 240 241 242 243
        x_emb = fluid.embedding(
            x, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v')
        )
        x2_emb = fluid.embedding(
            x2, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v')
        )
        x3_emb = fluid.embedding(
            x3, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v')
        )
244 245
        # merge layers
        x_merge = fluid.layers.elementwise_add(x_emb, x2_emb, name='x_add_x2')
246 247 248
        x2_merge = fluid.layers.elementwise_add(
            x2_emb, x3_emb, name='x2_add_x3'
        )
249
        # shared fc_w
250 251 252 253 254 255 256
        predict = fluid.layers.fc(
            input=x_merge,
            size=1,
            act='softmax',
            param_attr=fluid.ParamAttr(name='fc_w'),
            name='fc_predict',
        )
257
        # useless layer for calculating loss
258 259 260 261 262 263 264
        fc_no_use = fluid.layers.fc(
            input=x2_merge,
            size=1,
            act='sigmoid',
            param_attr=fluid.ParamAttr(name='fc_w'),
            name='fc_no_use',
        )
265 266
        # loss
        cost = fluid.layers.square_error_cost(input=predict, label=label)
267
        loss = paddle.mean(cost, name='mean_loss')
268 269 270 271 272

        return loss


class TestSimpleNet(TestBackward):
273
    def test_backward(self):
274 275 276 277 278 279 280 281
        """
        Instantiate each NetClass to test backward.
        """
        self.global_block_idx = 0
        self.net = SimpleNet()
        self._check_all(self.net)


282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestGradientsError(unittest.TestCase):
    def test_error(self):
        x = fluid.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
        x.stop_gradient = False
        conv = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
        y = fluid.layers.relu(conv)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y.name, x)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y, x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], [x], target_gradients=x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], x, no_grad_set=conv)


302 303 304 305 306 307 308
class TestSimpleNetWithErrorParamList(TestBackward):
    def test_parameter_list_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of parameter_list argument must be list or tuple
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, "test")
309
        # The type of parameter_list's member must be Variable or str
310 311 312 313 314
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, [test, "test", 3])


315 316 317 318 319 320 321 322 323 324 325 326 327
class TestSimpleNetWithErrorNoGradSet(TestBackward):
    def test_no_grad_set_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of no_grad_set argument must be set or list or tuple
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, "test")
        # The type of no_grad_set's member must be Variable or str
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, [test, "test", 3])


328 329 330 331 332 333 334
class TestAppendBackwardWithError(unittest.TestCase):
    def build_net(self):
        x = fluid.data(name='x', shape=[None, 13], dtype='int64')
        y = fluid.data(name='y', shape=[None, 1], dtype='float32')
        x_emb = fluid.embedding(x, size=[100, 256])
        y_predict = fluid.layers.fc(input=x_emb, size=1, name='my_fc')
        loss = fluid.layers.square_error_cost(input=y_predict, label=y)
335
        avg_loss = paddle.mean(loss)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        param_names = [
            param.name
            for param in fluid.default_main_program().block(0).all_parameters()
        ]

        return avg_loss, param_names

    def setUp(self):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            self.avg_loss, self.param_names = self.build_net()

    def test_loss_type_error(self):
        with self.assertRaises(TypeError):
            fluid.backward.append_backward(loss=self.avg_loss.name)

    def test_parameter_list_type_error(self):
        with self.assertRaises(TypeError):
            self.param_names[0] = np.random.random([10])
355 356 357
            fluid.backward.append_backward(
                loss=self.avg_loss, parameter_list=self.param_names
            )
358 359 360 361 362 363 364

    def test_callback_type_error(self):
        with self.assertRaises(TypeError):

            def callback(block, context):
                return

365 366 367
            fluid.backward.append_backward(
                loss=self.avg_loss, callbacks=callback
            )
368 369


370 371 372 373 374
class TestGradientsWithOptimizer(unittest.TestCase):
    def _check_grad_op_name(self, forward_list, optimiezed_list):
        backward_list = [op + "_grad" for op in reversed(forward_list)]
        idx = optimiezed_list.index(backward_list[0], len(backward_list))

375 376 377
        self.assertListEqual(
            backward_list, optimiezed_list[idx : idx + len(backward_list)]
        )
378 379 380 381 382 383 384 385 386 387 388 389

    def test_gradient_with_optimizer(self):
        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)

            forward_list = [o.type for o in main.current_block().ops]
390 391 392 393 394 395
            (
                optimize_ops,
                pram_grads,
            ) = paddle.autograd.backward_mode.gradients_with_optimizer(
                main, opt
            )
396 397 398 399 400 401 402 403

            optimized_list = [o.type for o in main.current_block().ops]

            self.assertGreater(len(optimized_list), len(forward_list))
            self.assertIn(opt.type, optimized_list)
            self._check_grad_op_name(forward_list, optimized_list)


404 405 406
# TODO(Aurelius84): add conditional network test
class ConditionalNet(BackwardNet):
    def __init__(self):
407
        super().__init__()
408 409 410


if __name__ == '__main__':
411
    paddle.enable_static()
412
    unittest.main()