Trainer.cpp 22.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Trainer.h"

#include <fenv.h>
#include <stdio.h>

#include <iomanip>
Y
Yu Yang 已提交
21
#include <iostream>
Z
zhangjinchao01 已提交
22
#include <limits>
Y
Yu Yang 已提交
23
#include <sstream>
Z
zhangjinchao01 已提交
24 25 26

#include <google/protobuf/text_format.h>

Y
Yu Yang 已提交
27 28
#include "paddle/utils/Excepts.h"
#include "paddle/utils/GlobalConstants.h"
Z
zhangjinchao01 已提交
29 30 31 32
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"

Y
Yu Yang 已提交
33
#include "RemoteParameterUpdater.h"
Z
zhangjinchao01 已提交
34 35 36
#include "TesterConfig.h"
#include "ThreadParameterUpdater.h"
#include "TrainerConfigHelper.h"
Y
Yu Yang 已提交
37 38 39
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"
Z
zhangjinchao01 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
DEFINE_string(config, "", "Trainer config file");

DEFINE_int32(test_period,
             0,
             "if equal 0, do test on all test data at the end of "
             "each pass. While if equal non-zero, do test on all test "
             "data every test_period batches");
DEFINE_bool(test_all_data_in_one_period,
            false,
            "This option was deprecated, since we will always do "
            "test on all test set ");

DEFINE_bool(local, true, "Train in local mode or not");

DEFINE_int32(average_test_period,
             0,
             "Do test on average parameter every so"
             " many batches. MUST be devided by FLAGS_log_period."
             " Default 0 means do not test average parameter");

DEFINE_int32(saving_period, 1, "Save parameteres every so many passes");
DEFINE_int64(saving_period_by_batches,
             0,
             "Save parameters every so many batches in one pass");
DEFINE_string(save_dir, "", "Directory for saving model parameter");
DEFINE_int32(start_pass,
             0,
             "Start training from this pass. "
             "Will load parameter from the previous pass");
DEFINE_int32(test_pass, -1, "Will load parameter start from this pass to test");
DEFINE_int32(test_wait, 0, "Waiting for pass parameter if not exist");
DEFINE_bool(with_cost, true, "enable cost layer or not");
DEFINE_bool(distribute_test, false, "test in distribute mode");

DEFINE_int32(num_passes, 100, "train for so many passes");

DEFINE_string(config_args,
              "",
              "arguments passed to config file."
              "Format: key1=value1,key2=value2");

DEFINE_bool(save_only_one,
            false,
            "Save only parameters in last pass, remove previous.");

DEFINE_string(feat_file, "", "File name of extracted feature.");
DEFINE_string(predict_output_dir,
              "",
              "Directory that saves the predicted results of output layers");
DEFINE_string(model_list, "", "File that saves the model list when evaluation");
Z
zhangjinchao01 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103

namespace paddle {

void Trainer::init(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);

  auto config = TrainerConfigHelper::createFromFlagConfig();
  feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW);

  init(config);
}

104
void Trainer::init(const std::shared_ptr<TrainerConfigHelper>& config,
Z
zhangjinchao01 已提交
105
                   bool testing,
106 107 108
                   const std::shared_ptr<GradientMachine>& gradientMachine,
                   const std::shared_ptr<DataProvider>& dataProvider,
                   const std::shared_ptr<DataProvider>& testDataProvider) {
Z
zhangjinchao01 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  this->stats_ = std::make_shared<TrainerStats>();

  config_ = config;

  config_->updateConfigFromFlags();

  testing_ = testing;

  // in testing, mode_ may GradientMachine::kTesting or
  // GradientMachine::kSgdSparseCpuTraining

  if (FLAGS_local) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "local and loadsave_parameters_in_pserver can not both true";
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdaterForEachParams();
      LOG(INFO) << "ignore sparse_remote_update=true due to  --local=true";
    }
  }
  if (FLAGS_loadsave_parameters_in_pserver) {
    CHECK(config_->getOptConfig().use_sparse_remote_updater())
        << "no parameter to load from pserver, please check network config";
  }
  if (testing && !FLAGS_loadsave_parameters_in_pserver) {
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdater();
      LOG(INFO) << "because parameter is loaded local,"
                << "tester ignore sparse_remote_update flag";
    }
  }

  CHECK(TrainAlgorithm::isValid(config_->getOptConfig().algorithm()))
      << "invalid algorithm configuration: "
      << config_->getOptConfig().algorithm();

  bool useSparseUpdater = false;
  for (auto& paraConfig : config_->getModelConfig().parameters()) {
    if (paraConfig.sparse_update() || paraConfig.sparse_remote_update()) {
      useSparseUpdater = true;
    }
  }

  if (testing) {
    LOG(INFO) << "trainer: in testing mode";
    if (config_->getOptConfig().use_sparse_remote_updater() ||
        FLAGS_trainer_count > 1) {
      mode_ = GradientMachine::kSgdSparseCpuTraining;
      LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
    } else {
      mode_ = GradientMachine::kTesting;
      LOG(INFO) << "trainer mode: Testing";
    }
  } else if (IGradientMachineMode::tryGetMode(
162 163 164 165 166
                 (int*)&mode_,
                 config_->getOptConfig().algorithm(),
                 FLAGS_trainer_count,
                 FLAGS_local,
                 FLAGS_use_gpu)) {
Z
zhangjinchao01 已提交
167 168
    LOG(INFO) << "Custom trainer mode.";
  } else if ((config_->getOptConfig().algorithm() == TrainAlgorithm::SGD ||
169 170 171
              config_->getOptConfig().algorithm() ==
                  TrainAlgorithm::AsyncSGD) &&
             useSparseUpdater) {
Z
zhangjinchao01 已提交
172 173 174 175 176 177 178 179
    mode_ = GradientMachine::kSgdSparseCpuTraining;
    LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
  } else {
    mode_ = GradientMachine::kNormal;
    LOG(INFO) << "trainer mode: Normal";
  }

  // initialize trainer internal
180 181
  trainerInternal_.init(config_,
                        gradientMachine,
Z
zhangjinchao01 已提交
182
                        TrainerInternalConfig::createFromMode(mode_),
183 184
                        stats_,
                        testing);
Z
zhangjinchao01 已提交
185
  std::unique_ptr<ParameterUtilConfig> paramConfig(
186 187 188 189
      new ParameterUtilConfig(FLAGS_save_only_one,
                              FLAGS_saving_period,
                              FLAGS_loadsave_parameters_in_pserver,
                              FLAGS_config));
Z
zhangjinchao01 已提交
190 191

  paramUtil_.reset(
192 193 194 195
      new paddle::ParameterUtil(config_,
                                std::move(paramConfig),
                                trainerInternal_.getGradientMachine(),
                                trainerInternal_.getParameterUpdater()));
Z
zhangjinchao01 已提交
196

197 198 199
  bool gpuData =
      FLAGS_use_gpu && (!FLAGS_parallel_nn) &&
      (!IGradientMachineMode::dataMustInCpu(mode_, FLAGS_trainer_count));
Z
zhangjinchao01 已提交
200 201

  dataProvider_ = dataProvider;
X
xuwei06 已提交
202
  if (!dataProvider_ && config_->hasDataConfig() && !testing_) {
203
    dataProvider_.reset(DataProvider::create(*config_, *config_, gpuData));
Z
zhangjinchao01 已提交
204
  }
E
emailweixu 已提交
205 206
  if (!testDataProvider_) {
    // No evaluator_ if there is testDataProvider but no dataProvider.
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    evaluator_.reset(trainerInternal_.getGradientMachine()->makeEvaluator());
    currentEvaluator_.reset(
        trainerInternal_.getGradientMachine()->makeEvaluator());
    if (FLAGS_average_test_period > 0 && FLAGS_trainer_id == 0 &&
        config_->getOptConfig().average_window() > 0) {
      CHECK_EQ(FLAGS_average_test_period % FLAGS_log_period, 0)
          << "FLAGS_average_test_period must be divided by FALGS_log_period";
      averageEvaluator_.reset(
          trainerInternal_.getGradientMachine()->makeEvaluator());
    }
  }

  testDataProvider_ = testDataProvider;
  if (!testDataProvider_ && config_->hasTestDataConfig()) {
    testDataProvider_.reset(
222
        DataProvider::create(config_->getTestDataConfig(), *config_, gpuData));
Z
zhangjinchao01 已提交
223 224
  }
  if (testDataProvider_) {
E
emailweixu 已提交
225
    createTester();
Z
zhangjinchao01 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  }

  if (!testing &&
      (trainerInternal_.getGradientMachine()->hasStaticParameters())) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "is_static and loadsave_parameters_in_pserver can not both true";
  }
  if (testing) {
    // will load per pass for tester
  } else if (paramUtil_->tryLoadParametersFromConfig()) {
    // load from config already.
  } else {
    trainerInternal_.getGradientMachine()->randParameters();
  }

  // Only non static parameters need to be updated
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  if (trainerInternal_.getParameterUpdater()) {
    trainerInternal_.getParameterUpdater()->init(parameters);

    if (FLAGS_loadsave_parameters_in_pserver && FLAGS_trainer_id == 0) {
      if (testing) {
        // will load per pass for tester
      } else if (!config_->getConfig().init_model_path().empty() &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        paramUtil_->loadParametersWithPath(
253 254 255
            config_->getConfig().init_model_path(),
            false /*local*/,
            true /*remote*/);
Z
zhangjinchao01 已提交
256 257 258
      } else if (config_->getConfig().start_pass() > 0 &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        CHECK(paramUtil_->loadParameters(config_->getConfig().start_pass() - 1,
259 260
                                         false /*local*/,
                                         true /*remote*/));
Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269 270 271 272
      } else {
        trainerInternal_.getParameterUpdater()->randParametersRemote();
      }
    }
  }

  // set current evaluator and evalutor
  trainerInternal_.setCurrentEvaluator(currentEvaluator_.get());
  trainerInternal_.setEvaluator(evaluator_.get());
}

void Trainer::train(size_t numPasses) {
E
emailweixu 已提交
273
  startTrain();
Z
zhangjinchao01 已提交
274 275 276 277
  for (size_t i = 0; i < numPasses; ++i) {
    if (IGradientMachineMode::trainWholeDataInOneBatch(mode_)) {
      trainOnePassBatch(config_->getConfig().start_pass() + i);
    } else {
E
emailweixu 已提交
278
      trainOnePass();
Z
zhangjinchao01 已提交
279 280 281 282 283 284
    }
    if (i < numPasses - 1) {
      dataProvider_->reset();
    }
  }

E
emailweixu 已提交
285
  finishTrain();
Z
zhangjinchao01 已提交
286 287 288
}

static double genPerturbation(real* d, real* grad, size_t dim) {
289
  auto& reng = ThreadLocalRandomEngine::get();
Z
zhangjinchao01 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  std::uniform_real_distribution<double> dist(-1, 1);
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    d[i] = dist(reng);
    dNorm += d[i] * d[i];
    gradNorm += grad[i] * grad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      d[i] = s * d[i] + grad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += grad[i] * d[i];
  }
  return delta;
}

real Trainer::checkGradient() {
  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  dataProvider_->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  std::vector<Argument>& inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
  real cost = Argument::sumCosts(outArgs);
  LOG(INFO) << "original cost=" << cost;
  trainerInternal_.getGradientMachine()->backward();

  real maxDiff = 0;
  char fill = ' ';
  for (auto& parameter : parameters) {
    CpuVector oldPara(parameter->getSize());
    CpuVector newPara(parameter->getSize());
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    real* grad = cpuGrad.getData();
    size_t dim = parameter->getSize();
    std::vector<real> d(dim);

    double delta = genPerturbation(d.data(), grad, dim);

    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    delta *= step;
    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] + step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost1 = Argument::sumCosts(outArgs);

    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] - step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost2 = Argument::sumCosts(outArgs);

    real trueDelta = 0.5 * (newCost1 - newCost2);
    real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
    LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(fill)
              << std::setw(20) << parameter->getName()
              << "step=" << std::setw(15) << step << "cost1=" << std::setw(10)
              << newCost1 << "cost2=" << std::setw(10) << newCost2
              << "true_delta=" << std::setw(15) << trueDelta
              << "analytic_delta=" << std::setw(15) << delta << "diff=" << diff
              << (std::abs(diff) > 0.01 ? " ***" : "");

    maxDiff = std::max(maxDiff, std::abs(diff));

    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();

    fill = (fill == ' ') ? '.' : ' ';
  }
  return maxDiff;
}

E
emailweixu 已提交
386 387 388 389 390 391 392 393 394 395
void Trainer::startTrain() {
  trainPassContext_.passId = config_->getConfig().start_pass();
  srand(config_->getConfig().start_pass() + 1);
  if (dataProvider_) {
    dataProvider_->reset();
  }

  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
}

396
void Trainer::finishTrain() { trainerInternal_.getGradientMachine()->finish(); }
E
emailweixu 已提交
397 398 399 400 401 402 403

void Trainer::startTrainPass() {
  stats_->reset();
  trainPassContext_.batchId = 0;
  trainPassContext_.avgTestCost = 0;
  trainPassContext_.numAvgTests = 0;
  trainPassContext_.passInnerId = 1;
Z
zhangjinchao01 已提交
404 405 406 407 408 409 410

  trainerInternal_.getParameterUpdater()->startPass();
  evaluator_->start();
  if (FLAGS_prev_batch_state) {
    trainerInternal_.getGradientMachine()->resetState();
    trainerInternal_.getGradientMachine()->getState(testState_);
  }
E
emailweixu 已提交
411
}
Z
zhangjinchao01 已提交
412

E
emailweixu 已提交
413 414 415 416 417 418 419
void Trainer::trainOneDataBatch(DataBatch& dataBatch) {
  int num = dataBatch.getSize();
  if (averageEvaluator_) {
    int64_t mod = trainPassContext_.batchId % FLAGS_average_test_period;
    if (mod >= FLAGS_average_test_period - FLAGS_log_period) {
      if (mod == FLAGS_average_test_period - FLAGS_log_period) {
        averageEvaluator_->start();
Z
zhangjinchao01 已提交
420
      }
E
emailweixu 已提交
421 422 423 424
      trainerInternal_.getParameterUpdater()->apply();
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->getState(trainState_);
      }
425 426
      trainPassContext_.avgTestCost += tester_->forwardOneBatch(
          dataBatch, averageEvaluator_.get(), &forwardOutput_);
E
emailweixu 已提交
427 428 429 430 431
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->setState(trainState_);
      }
      trainPassContext_.numAvgTests += num;
      trainerInternal_.getParameterUpdater()->restore();
Z
zhangjinchao01 已提交
432
    }
E
emailweixu 已提交
433 434 435 436
  }
  {
    REGISTER_TIMER("TrainBatch");
    trainerInternal_.trainOneBatch(
437
        trainPassContext_.batchId, dataBatch, &forwardOutput_);
E
emailweixu 已提交
438
  }
Z
zhangjinchao01 已提交
439

E
emailweixu 已提交
440
  if (averageEvaluator_ &&
441 442
      trainPassContext_.batchId % FLAGS_average_test_period ==
          FLAGS_average_test_period - 1) {
E
emailweixu 已提交
443 444
    averageEvaluator_->finish();
    LOG(INFO) << " Averaged parameter:"
445 446
              << " cost="
              << trainPassContext_.avgTestCost / trainPassContext_.numAvgTests
E
emailweixu 已提交
447 448 449 450
              << " Eval: " << *averageEvaluator_;
    trainPassContext_.numAvgTests = 0;
    trainPassContext_.avgTestCost = 0;
  }
Z
zhangjinchao01 已提交
451

E
emailweixu 已提交
452
  ++trainPassContext_.batchId;
Z
zhangjinchao01 已提交
453

E
emailweixu 已提交
454 455 456 457 458
  if (trainPassContext_.batchId % FLAGS_log_period == 0) {
    FOR_TIMING(globalStat.setThreadInfo(true));
    FOR_TIMING(globalStat.printAllStatus());
    FOR_TIMING(globalStat.reset());
  }
Z
zhangjinchao01 已提交
459

W
wangyanfei01 已提交
460 461 462
  if (testDataProvider_ && FLAGS_test_period > 0 &&
      trainPassContext_.batchId % FLAGS_test_period == 0) {
    tester_->testOnePeriod();
E
emailweixu 已提交
463
  }
Z
zhangjinchao01 已提交
464

E
emailweixu 已提交
465
  if (FLAGS_saving_period_by_batches > 0 &&
466 467
      trainPassContext_.batchId >
          FLAGS_saving_period_by_batches * trainPassContext_.passInnerId &&
E
emailweixu 已提交
468 469 470
      0 == FLAGS_trainer_id) {
    trainerInternal_.getParameterUpdater()->catchUpWith();
    if (testDataProvider_) {
W
wangyanfei01 已提交
471
      tester_->testOnePeriod();
Z
zhangjinchao01 已提交
472
    }
473 474
    paramUtil_->saveParametersOnePass(trainPassContext_.passId,
                                      trainPassContext_.passInnerId);
E
emailweixu 已提交
475
    ++trainPassContext_.passInnerId;
Z
zhangjinchao01 已提交
476
  }
E
emailweixu 已提交
477
}
Z
zhangjinchao01 已提交
478

E
emailweixu 已提交
479 480
void Trainer::finishTrainPass() {
  if (trainPassContext_.batchId == 0) {
Z
zhangjinchao01 已提交
481 482 483 484
    // This means no more data from DataProvider
    return;
  }

485 486
  trainerInternal_.finishTrainPass(trainPassContext_.passId,
                                   trainPassContext_.batchId);
Z
zhangjinchao01 已提交
487 488 489 490 491 492 493 494 495

  FOR_TIMING(globalStat.setThreadInfo(true));
  FOR_TIMING(globalStat.printAllStatus());
  FOR_TIMING(globalStat.reset());

  if (testDataProvider_) {
    tester_->testOnePeriod();
  }

496 497
  if (trainPassContext_.passId % FLAGS_saving_period == 0 &&
      FLAGS_trainer_id == 0) {
E
emailweixu 已提交
498
    paramUtil_->saveParametersOnePass(trainPassContext_.passId);
Z
zhangjinchao01 已提交
499
  }
E
emailweixu 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
  ++trainPassContext_.passId;
}

void Trainer::trainOnePass() {
  startTrainPass();
  size_t batchSize = config_->getOptConfig().batch_size();
  while (true) {
    DataBatch dataBatch;

    int num = 0;
    {
      REGISTER_TIMER("getTrainBatch");
      num = dataProvider_->getNextBatch(batchSize, &dataBatch);
    }
    if (num == 0) break;
    CHECK_EQ(num, dataBatch.getSize());
    trainOneDataBatch(dataBatch);
  }

  finishTrainPass();
Z
zhangjinchao01 已提交
520 521 522 523 524 525 526 527 528
}

void Trainer::trainOnePassBatch(int passId) {
  this->stats_->reset();

  trainerInternal_.getParameterUpdater()->startPass();
  const std::vector<Argument> inArgs;
  {
    REGISTER_TIMER("onePass");
529 530
    trainerInternal_.getGradientMachine()->forwardBackward(
        inArgs, nullptr, PASS_TRAIN, nullptr);
Z
zhangjinchao01 已提交
531 532 533 534 535 536 537 538 539
  }

  real cost = .0;
  int64_t num = 0;
  trainerInternal_.getGradientMachine()->getStats(cost, num);
  *stats_ += {num, cost};

  trainerInternal_.getGradientMachine()->onPassEnd();

540
  bool accepted = trainerInternal_.getParameterUpdater()->finishPass(cost);
Z
zhangjinchao01 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

  globalStat.setThreadInfo(true);
  globalStat.printAllStatus();
  globalStat.reset();

  LOG(INFO) << " Pass=" << passId
            << " AcceptedPass=" << (accepted ? acceptedPassId_ : -1)
            << stats_->getStats(false /*withCurrentCost*/);

  if (accepted) {
    if (acceptedPassId_ % FLAGS_saving_period == 0 && FLAGS_trainer_id == 0) {
      paramUtil_->saveParameters(acceptedPassId_);
    }
    acceptedPassId_++;
    if (FLAGS_save_only_one && acceptedPassId_ >= FLAGS_saving_period) {
      paramUtil_->deleteParameters(acceptedPassId_ - FLAGS_saving_period);
    }
  }
}

561 562
real Trainer::calcGradient(const DataBatch& dataBatch,
                           const Vector& value,
Z
zhangjinchao01 已提交
563 564 565
                           Vector& gradient) {
  CHECK_EQ(value.getSize(), gradient.getSize());
  std::vector<ParameterPtr>& parameters =
566
      trainerInternal_.getGradientMachine()->getParameters();
Z
zhangjinchao01 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

  clearGradient();

  size_t offset = 0;
  size_t valueSize = value.getSize();

  for (auto& para : parameters) {
    CHECK_LE(offset + para->getSize(), valueSize);
    VectorPtr val =
        Vector::create(para->getSize(), value.getMemoryHandle(), offset);
    para->getBuf(PARAMETER_VALUE)->copyFrom(*val);
    para->setValueUpdated();
    offset += para->getSize();
  }

  CHECK_EQ(offset, valueSize);

  std::vector<Argument> inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

587 588
  trainerInternal_.getGradientMachine()->forwardBackward(
      inArgs, &outArgs, PASS_TRAIN);
Z
zhangjinchao01 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
  real cost = Argument::sumCosts(outArgs);

  offset = 0;
  for (auto& para : parameters) {
    VectorPtr grad =
        Vector::create(para->getSize(), gradient.getMemoryHandle(), offset);
    if (para->getBuf(PARAMETER_GRADIENT)) {
      grad->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    }
    offset += para->getSize();
  }

  return cost;
}

void Trainer::clearGradient() {
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  for (auto& parameter : parameters) {
    parameter->clearGradient();
  }
}

int Trainer::getBatchSize() { return config_->getOptConfig().batch_size(); }

E
emailweixu 已提交
614
void Trainer::createTester() {
615 616
  tester_.reset(new paddle::Tester(config_,
                                   createTesterConfig(),
E
emailweixu 已提交
617 618 619 620 621
                                   trainerInternal_.getGradientMachine(),
                                   trainerInternal_.getParameterUpdater(),
                                   testDataProvider_));
}

622
void Trainer::test() { tester_->test(); }
Z
zhangjinchao01 已提交
623 624 625

std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
  TesterConfig* conf = new TesterConfig;
W
wangyanfei01 已提交
626
  if (FLAGS_test_period) {
Y
Yu Yang 已提交
627 628 629 630
    LOG(WARNING) << "The meaning of --test_period is changed: "
                 << "if equal 0, do test on all test data at the end of "
                 << "each pass. While if equal non-zero, do test on all test "
                 << "data every test_period batches ";
W
wangyanfei01 已提交
631 632
  }
  if (FLAGS_test_all_data_in_one_period) {
Y
Yu Yang 已提交
633 634
    LOG(WARNING) << "--test_all_data_in_one_period was deprecated, since "
                 << "we will always do test on all test set ";
W
wangyanfei01 已提交
635
  }
W
wangyanfei01 已提交
636
  conf->testPeriod = FLAGS_test_period;
Z
zhangjinchao01 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
  conf->prevBatchState = FLAGS_prev_batch_state;
  conf->logPeriod = FLAGS_log_period;
  conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
  conf->featFile = FLAGS_feat_file;
  conf->predictOutputDir = FLAGS_predict_output_dir;
  conf->trainerId = FLAGS_trainer_id;
  conf->distributeTest = FLAGS_distribute_test;
  conf->config = FLAGS_config;
  conf->modelList = FLAGS_model_list;
  conf->testPass = FLAGS_test_pass;
  conf->numPasses = FLAGS_num_passes;
  conf->savingPeriod = FLAGS_saving_period;
  conf->testWait = FLAGS_test_wait;
  conf->initModelPath = FLAGS_init_model_path;
  conf->saveOnlyOne = FLAGS_save_only_one;
  conf->testing = testing_;
  conf->mode = mode_;
  conf->trainState = &trainState_;
  conf->testState = &testState_;
  return std::unique_ptr<TesterConfig>(conf);
}

659
ParameterUtil* Trainer::getParameterUtilPtr() { return paramUtil_.get(); }
Z
zhangjinchao01 已提交
660
}  // namespace paddle