“bd68761a0ed239bd6d0af7656f0956783d33e129”上不存在“paddle/git@gitcode.net:Crayonxin2000/Paddle.git”
ActivationFunction.cpp 11.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ActivationFunction.h"

#include <algorithm>
#include <iostream>
Y
Yu Yang 已提交
19
#include <memory>
Z
zhangjinchao01 已提交
20 21
#include <string>
#include <thread>
Y
Yu Yang 已提交
22
#include <type_traits>
Z
zhangjinchao01 已提交
23
#include "paddle/parameter/Argument.h"
Y
Yu Yang 已提交
24
#include "paddle/utils/ClassRegistrar.h"
Z
zhangjinchao01 已提交
25 26 27 28 29 30

#include "paddle/utils/Logging.h"

namespace paddle {

static ClassRegistrar<ActivationFunction> gActivationRegistrar;
Q
qijun 已提交
31 32 33 34 35 36
/**
 * @def ACTIVATION_CLASS_NAME
 * @brief Macro for getting derived activation class name
 * @note ACTIVATION_CLASS_NAME(softmax) softmax_;
 * means softmaxActivation softmax_;
 */
Z
zhangjinchao01 已提交
37
#define ACTIVATION_CLASS_NAME(ACTIVATION_NAME) ACTIVATION_NAME##Activation
Q
qijun 已提交
38 39 40 41
/**
 * @def BEGIN_DEFINE_ACTIVATION
 * @brief Macro for defining a devried activation class
 */
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48
#define BEGIN_DEFINE_ACTIVATION(ACTIVATION_NAME)                             \
  class ACTIVATION_CLASS_NAME(ACTIVATION_NAME) : public ActivationFunction { \
  private:                                                                   \
    static const std::string name;                                           \
                                                                             \
  public:                                                                    \
    const std::string& getName() const { return name; }
Q
qijun 已提交
49 50 51 52
/**
 * @def END_DEFINE_ACTIVATION
 * @brief Macro for registering a derived activation class
 */
Z
zhangjinchao01 已提交
53
#define END_DEFINE_ACTIVATION(ACTIVATION_NAME)                     \
54 55
  }                                                                \
  ;                                                                \
Z
zhangjinchao01 已提交
56 57 58
  const std::string ACTIVATION_CLASS_NAME(ACTIVATION_NAME)::name = \
      #ACTIVATION_NAME;                                            \
  static InitFunction __reg_activation__##ACTIVATION_NAME([] {     \
59 60 61
    gActivationRegistrar                                           \
        .registerClass<ACTIVATION_CLASS_NAME(ACTIVATION_NAME)>(    \
            #ACTIVATION_NAME);                                     \
Z
zhangjinchao01 已提交
62 63 64 65 66 67 68 69 70 71
  });

/**
 * @brief The IdentityActivation class
 *
 * Do nothing when forward/backward.
 */
class IdentityActivation : public ActivationFunction {
public:
  static const std::string name;
72 73 74 75 76 77 78 79
  Status forward(Argument& act) {
    (void)act;
    return Status();
  }
  Status backward(Argument& act) {
    (void)act;
    return Status();
  }
Z
zhangjinchao01 已提交
80 81 82 83 84 85 86 87 88
  const std::string& getName() const { return name; }
};
const std::string IdentityActivation::name = "";
static InitFunction __reg_activation__identity([] {
  gActivationRegistrar.registerClass<IdentityActivation>("");
  gActivationRegistrar.registerClass<IdentityActivation>("linear");
});

/**
Q
qijun 已提交
89 90
 * @brief Sigmoid Activation
 * \f[
Z
zhangjinchao01 已提交
91
 * f(z) = \frac{1}{1+exp(-z)}
Q
qijun 已提交
92
 * \f]
Z
zhangjinchao01 已提交
93 94
 */
BEGIN_DEFINE_ACTIVATION(sigmoid)
95 96 97 98 99 100 101 102
Status forward(Argument& act) {
  act.value->sigmoid(*act.value);
  return Status();
}
Status backward(Argument& act) {
  act.grad->sigmoidDerivative(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
103 104 105
END_DEFINE_ACTIVATION(sigmoid)

/**
Q
qijun 已提交
106 107
 * @brief Softmax Activation
 * \f[
Z
zhangjinchao01 已提交
108
 * P(y=j|x) = \frac{e^{x^Tw_j}}{\sum^K_{k=1}e^{x^Tw_k}}
Q
qijun 已提交
109
 * \f]
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117
 */
BEGIN_DEFINE_ACTIVATION(softmax)
private:
MatrixPtr sftMaxSum_;
MatrixPtr sftMaxDot_;
MatrixPtr one_;

public:
118 119 120 121
Status forward(Argument& act) {
  act.value->softmax(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
122

123
Status backward(Argument& act) {
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130
  MatrixPtr outputV = act.value;
  MatrixPtr outputG = act.grad;

  if (outputG->useGpu()) {
    outputG->softmaxBackward(*outputV);
  } else {
    SetDevice device(act.deviceId);
131 132
    Matrix::resizeOrCreate(sftMaxDot_,
                           outputG->getHeight(),
Z
zhangjinchao01 已提交
133
                           outputG->getWidth(),
134 135 136 137 138 139 140
                           /* trans */ false,
                           useGpu(act.deviceId));
    Matrix::resizeOrCreate(sftMaxSum_,
                           outputG->getHeight(),
                           1,
                           /* trans */ false,
                           useGpu(act.deviceId));
Z
zhangjinchao01 已提交
141
    if (!one_ || one_->getWidth() != outputG->getWidth()) {
142 143 144 145 146
      Matrix::resizeOrCreate(one_,
                             1,
                             outputG->getWidth(),
                             /* trans */ false,
                             useGpu(act.deviceId));
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153 154
      one_->one();
    }

    sftMaxDot_->dotMul(*outputG, *outputV);
    sftMaxSum_->colMerge(*sftMaxDot_);

    act.grad->softmaxDerivative(*act.value, *sftMaxSum_);
  }
155
  return Status();
Z
zhangjinchao01 已提交
156 157 158
}
END_DEFINE_ACTIVATION(softmax)

Q
qijun 已提交
159 160 161 162 163
/**
 * @brief Sequence_softmax Activation
 * @note Softmax on all frames of one sequence.
 * Width of frame must be one.
 */
Z
zhangjinchao01 已提交
164 165 166 167 168 169
BEGIN_DEFINE_ACTIVATION(sequence_softmax)
private:
ACTIVATION_CLASS_NAME(softmax) softmax_;
Argument argument_;

public:
170 171 172 173 174
Status forward(Argument& act) {
  if (act.value->getWidth() != 1UL) {
    return Status(
        "Input width for each timestep of sequence softmax should be 1");
  }
Z
zhangjinchao01 已提交
175 176

  if (!argument_.value) {
177 178 179 180 181 182 183 184 185 186
    argument_.value = Matrix::create(nullptr,
                                     /* height= */ 1,
                                     1,
                                     /* trans= */ false,
                                     useGpu(act.deviceId));
    argument_.grad = Matrix::create(nullptr,
                                    /* height= */ 1,
                                    1,
                                    /* trans= */ false,
                                    useGpu(act.deviceId));
Z
zhangjinchao01 已提交
187 188 189 190
  }

  auto starts = act.sequenceStartPositions->getVector(useGpu(act.deviceId));
  act.value->sequenceSoftmax(*act.value, *starts);
191
  return Status();
Z
zhangjinchao01 已提交
192 193
}

194 195 196 197 198
Status backward(Argument& act) {
  if (act.value->getWidth() != 1UL) {
    return Status(
        "Input width for each timestep of sequence softmax should be 1");
  }
Z
zhangjinchao01 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211

  size_t numSequences = act.getNumSequences();
  const int* starts = act.sequenceStartPositions->getData(false);

  for (size_t i = 0; i < numSequences; ++i) {
    // TODO(Dangqingqing) optimization for GPU
    size_t offset = starts[i];
    size_t size = starts[i + 1] - starts[i];
    argument_.value->setData(act.value->getData() + offset, 1UL, size);
    argument_.grad->setData(act.grad->getData() + offset, 1UL, size);

    softmax_.backward(argument_);
  }
212
  return Status();
Z
zhangjinchao01 已提交
213 214 215 216
}
END_DEFINE_ACTIVATION(sequence_softmax)

/**
Q
qijun 已提交
217
 * @brief Relu Activation.
Z
zhangjinchao01 已提交
218 219 220 221 222 223 224 225 226
 * forward. y = max(0, z)
 *
 * derivative of relu is:
 *
 *    1 if z > 0
 *
 *    0 otherwise.
 */
BEGIN_DEFINE_ACTIVATION(relu)
227 228 229 230
Status forward(Argument& act) {
  act.value->relu(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
231

232 233 234 235
Status backward(Argument& act) {
  act.grad->reluDerivative(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
236 237 238
END_DEFINE_ACTIVATION(relu)

/**
Q
qijun 已提交
239
 * @brief BRelu Activation.
Z
zhangjinchao01 已提交
240 241 242 243 244 245 246 247 248 249 250 251
 *
 * forward. y = min(24, max(0, z))
 *
 * derivative of brelu is:
 *
 *    1 if 0 < z < 24
 *
 *    0 otherwise.
 *
 * TODO(yuyang18): Remove magic number 24 or make it configuable.
 */
BEGIN_DEFINE_ACTIVATION(brelu)
252 253 254 255
Status forward(Argument& act) {
  act.value->brelu(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
256

257 258 259 260
Status backward(Argument& act) {
  act.grad->breluDerivative(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
261 262 263
END_DEFINE_ACTIVATION(brelu)

/**
Q
qijun 已提交
264 265
 * @brief Tanh Activation.
 * \f[
Z
zhangjinchao01 已提交
266
 * f(z) = tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}
Q
qijun 已提交
267
 * \f]
Z
zhangjinchao01 已提交
268 269
 */
BEGIN_DEFINE_ACTIVATION(tanh)
270 271 272 273
Status forward(Argument& act) {
  act.value->tanh(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
274

275 276 277 278
Status backward(Argument& act) {
  act.grad->tanhDerivative(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
279 280 281
END_DEFINE_ACTIVATION(tanh)

/**
Q
qijun 已提交
282 283
 * @brief Scaled Tanh Activation
 * \f[
Z
zhangjinchao01 已提交
284
 * f(z) = 1.7159 * tanh(2/3*z)
Q
qijun 已提交
285
 * \f]
Z
zhangjinchao01 已提交
286 287 288 289 290 291 292
 */
BEGIN_DEFINE_ACTIVATION(stanh)
private:
real a, b;

public:
ACTIVATION_CLASS_NAME(stanh)() : a(1.7159), b(2. / 3.) {}
293 294 295 296
Status forward(Argument& act) {
  act.value->scaledTanh(*act.value, a, b);
  return Status();
}
Z
zhangjinchao01 已提交
297

298
Status backward(Argument& act) {
Z
zhangjinchao01 已提交
299
  act.grad->scaledTanhDerivative(*act.value, a, b);
300
  return Status();
Z
zhangjinchao01 已提交
301 302 303 304
}
END_DEFINE_ACTIVATION(stanh)

/**
Q
qijun 已提交
305 306
 * @brief Soft Relu Activation.
 * \f[
Z
zhangjinchao01 已提交
307
 * f(z) = ln(1+e^z)
Q
qijun 已提交
308
 * \f]
Z
zhangjinchao01 已提交
309 310
 */
BEGIN_DEFINE_ACTIVATION(softrelu)
311 312 313 314
Status forward(Argument& act) {
  act.value->softrelu(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
315

316 317 318 319
Status backward(Argument& act) {
  act.grad->softreluDerivative(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
320 321 322
END_DEFINE_ACTIVATION(softrelu)

/**
Q
qijun 已提交
323
 * @brief Abs Activation.
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331 332 333 334
 * Forward: f(z) = abs(z)
 *
 * Derivative:
 *
 *     1   if z>0
 *
 *    -1   if z<0
 *
 *     0   if z=0
 */
BEGIN_DEFINE_ACTIVATION(abs)
335
Status forward(Argument& act) {
Z
zhangjinchao01 已提交
336
  SetDevice device(act.deviceId);
337 338 339 340 341
  Matrix::resizeOrCreate(act.in,
                         act.value->getHeight(),
                         act.value->getWidth(),
                         /* trans */ false,
                         useGpu(act.deviceId));
Z
zhangjinchao01 已提交
342 343

  act.in->copyFrom(*act.value);
H
hedaoyuan 已提交
344
  act.value->abs2(*act.value);
345
  return Status();
Z
zhangjinchao01 已提交
346 347
}

348 349 350 351
Status backward(Argument& act) {
  act.grad->absDerivative(*act.in);
  return Status();
}
Z
zhangjinchao01 已提交
352 353 354
END_DEFINE_ACTIVATION(abs)

/**
Q
qijun 已提交
355 356
 * @brief Square Activation.
 * \f[
Z
zhangjinchao01 已提交
357
 * f(z) = z^2.
Q
qijun 已提交
358
 * \f]
Z
zhangjinchao01 已提交
359 360
 */
BEGIN_DEFINE_ACTIVATION(square)
361
Status forward(Argument& act) {
Z
zhangjinchao01 已提交
362
  SetDevice device(act.deviceId);
363 364 365 366 367
  Matrix::resizeOrCreate(act.in,
                         act.value->getHeight(),
                         act.value->getWidth(),
                         /* trans */ false,
                         useGpu(act.deviceId));
Z
zhangjinchao01 已提交
368 369

  act.in->copyFrom(*act.value);
H
hedaoyuan 已提交
370
  act.value->square2(*act.value);
371
  return Status();
Z
zhangjinchao01 已提交
372 373
}

374 375 376 377
Status backward(Argument& act) {
  act.grad->squareDerivative(*act.in);
  return Status();
}
Z
zhangjinchao01 已提交
378
END_DEFINE_ACTIVATION(square)
379

Q
qijun 已提交
380 381 382 383 384 385
/**
 * @brief Exponential Activation.
 * \f[
 * f(z) = e^z
 * \f]
 */
Z
zhangjinchao01 已提交
386
BEGIN_DEFINE_ACTIVATION(exponential)
387 388 389 390
Status forward(Argument& act) {
  act.value->exp2(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
391

392 393 394 395
Status backward(Argument& act) {
  act.grad->expDerivative(*act.value);
  return Status();
}
Z
zhangjinchao01 已提交
396 397
END_DEFINE_ACTIVATION(exponential)

398 399 400 401 402 403 404
/**
 * @brief Logarithm Activation.
 * \f[
 * f(z) = log(z)
 * \f]
 */
BEGIN_DEFINE_ACTIVATION(log)
405
Status forward(Argument& act) {
406
  SetDevice device(act.deviceId);
407 408 409 410 411
  Matrix::resizeOrCreate(act.in,
                         act.value->getHeight(),
                         act.value->getWidth(),
                         /* trans */ false,
                         useGpu(act.deviceId));
412 413

  act.in->copyFrom(*act.value);
H
hedaoyuan 已提交
414
  act.value->log2(*act.value);
415
  return Status();
416 417
}

418 419 420 421
Status backward(Argument& act) {
  act.grad->dotDiv(*act.grad, *act.in);
  return Status();
}
422 423
END_DEFINE_ACTIVATION(log)

Z
zhangjinchao01 已提交
424 425 426 427
ActivationFunction* ActivationFunction::create(const std::string& type) {
  return gActivationRegistrar.createByType(type);
}

428 429
std::vector<std::string> ActivationFunction::getAllRegisteredTypes() {
  std::vector<std::string> types;
430 431
  gActivationRegistrar.forEachType(
      [&](const std::string& type) { types.push_back(type); });
432 433 434
  return types;
}

Z
zhangjinchao01 已提交
435
}  // namespace paddle