optimizer.py 20.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
F
fengjiayi 已提交
18
from backward import append_backward
19
from framework import unique_name, program_guard
20 21 22
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
23
from clip import append_gradient_clip_ops, error_clip_callback
24

25
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
26 27 28 29 30 31


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
32 33
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
34 35
    """

D
dzhwinter 已提交
36
    def __init__(self, global_step=None, regularization=None):
37
        self._global_step = global_step
D
dzhwinter 已提交
38
        self.regularization = regularization
39 40 41 42 43
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
44
        self.helper = None
Q
Qiao Longfei 已提交
45 46 47 48 49 50

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

51 52 53 54 55 56 57 58 59 60 61 62 63
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
        param_lr_shape = [1]
        param_lr_var = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=param_lr_shape,
            lod_level=1,
            persistable=True)
        param_lr = param_lr * self._learning_rate
        self.helper.set_variable_initializer(
64
            var=param_lr_var, initializer=Constant(param_lr))
65
        return param_lr_var
66 67 68 69 70 71 72

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
73
        """
74 75
        pass

76 77 78 79 80 81 82 83 84 85 86 87 88
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
89
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
90 91 92 93 94 95 96 97 98 99 100
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
101
            raise Exception("Accumulator {} already exists for parameter {}".
102
                            format(name, param.name))
Q
Qiao Longfei 已提交
103 104 105 106 107

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
F
fengjiayi 已提交
108
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
109 110 111
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
112
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
113
        self._accumulators[name][param.name] = var
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
151 152 153
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
154
                                 startup_program=None):
Q
Qiao Longfei 已提交
155 156 157 158 159 160 161
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
162 163 164 165
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
166
          :param startup_program: 
Q
Qiao Longfei 已提交
167
        """
168 169 170 171 172
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
173
        # for parameters and extend _finish_update method to add custom ops.
174 175

        # Create any accumulators
Q
Qiao Longfei 已提交
176
        program = loss.block.program
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        with program_guard(program, startup_program):
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Returned list of ops can include more ops in addition
            # to optimization ops
            return_ops = optimize_ops

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
            finish_ops = self._finish_update(loss.block)
            if finish_ops is not None:
                return_ops += finish_ops

            if self._global_step is not None:
                return_ops.append(self._increment_global_step(loss.block))
            return return_ops
Q
Qiao Longfei 已提交
203

Q
Qiao Longfei 已提交
204 205
    def minimize(self,
                 loss,
206
                 startup_program=None,
Q
Qiao Longfei 已提交
207 208
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
209 210
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
211
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
212 213
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
214 215
        params_grads = append_backward(loss, parameter_list, no_grad_set,
                                       error_clip_callback)
Y
Yu Yang 已提交
216 217 218

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
219
        # Add regularization if any
D
dzhwinter 已提交
220 221
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
222

Q
Qiao Longfei 已提交
223
        optimize_ops = self.create_optimization_pass(params_grads, loss,
224
                                                     startup_program)
T
typhoonzero 已提交
225
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
226 227 228 229 230 231


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
232
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
233
        assert learning_rate is not None
D
dzhwinter 已提交
234
        super(SGDOptimizer, self).__init__(**kwargs)
Q
Qiao Longfei 已提交
235 236 237
        self.type = "sgd"
        self._learning_rate = learning_rate

238 239
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
240

Q
Qiao Longfei 已提交
241 242 243 244 245 246
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
247
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
248
            },
249
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
250 251

        return sgd_op
252 253 254 255 256 257 258


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
259
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
260 261
        assert learning_rate is not None
        assert momentum is not None
D
dzhwinter 已提交
262
        super(MomentumOptimizer, self).__init__(**kwargs)
263 264 265
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
266
        self._use_nesterov = bool(use_nesterov)
267 268 269 270 271

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
272
            self._add_accumulator(self._velocity_acc_str, p)
273 274 275 276 277 278 279 280 281 282 283 284 285

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
286
                "LearningRate": self._create_param_lr(param_and_grad)
287 288 289 290 291
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
292
            attrs={"mu": self._momentum,
293
                   "use_nesterov": self._use_nesterov})
294 295

        return momentum_op
296 297 298 299 300 301 302


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
303
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
304 305
        assert learning_rate is not None
        assert epsilon is not None
D
dzhwinter 已提交
306
        super(AdagradOptimizer, self).__init__(**kwargs)
307 308 309 310 311 312 313 314
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
315
            self._add_accumulator(self._moment_acc_str, p)
316 317 318 319 320 321 322

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

323
        # Create the adagrad optimizer op
324 325 326 327 328 329
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
330
                "LearningRate": self._create_param_lr(param_and_grad)
331 332 333 334 335 336
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
337 338 339 340 341 342 343 344 345 346 347 348


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
349
                 epsilon=1e-8,
D
dzhwinter 已提交
350
                 **kwargs):
351 352 353 354
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
355
        super(AdamOptimizer, self).__init__(**kwargs)
356 357 358 359 360 361 362 363 364
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
365
        main_block = block.program.global_block()
366 367
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
368 369 370 371 372 373 374
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
375
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
376 377 378 379 380 381 382 383 384

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
385
            self._beta2_pow_acc, initializer=Constant(self._beta2))
386 387 388

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
389 390
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
391 392 393 394 395 396 397 398

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
399
        # create the adam optimize op
400 401 402 403 404
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
405
                "LearningRate": self._create_param_lr(param_and_grad),
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
428 429
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
430 431 432 433 434
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
435
        scale_beta2 = main_block.append_op(
436 437 438 439 440 441
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
442 443 444 445 446 447 448 449 450 451 452 453


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
454
                 epsilon=1e-8,
D
dzhwinter 已提交
455
                 **kwargs):
456 457 458 459
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
460
        super(AdamaxOptimizer, self).__init__(**kwargs)
461 462 463 464 465 466 467 468 469
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
470 471 472 473 474 475 476
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
477
            self._beta1_pow_acc, initializer=Constant(self._beta1))
478 479 480

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
481 482
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
483 484 485 486 487 488 489 490 491 492 493 494 495

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
496
                "LearningRate": self._create_param_lr(param_and_grad),
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
518 519
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
520 521 522 523 524 525
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
526 527 528 529 530 531 532


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
533
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
534 535 536 537
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

D
dzhwinter 已提交
538
        super(DecayedAdagradOptimizer, self).__init__(**kwargs)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        self.type = "decayed_adagrad"
        self._learning_rate = learning_rate
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer