reader.py 2.9 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dangqingqing 已提交
15 16 17 18 19 20 21 22 23 24 25 26
import os.path
import io
import numpy as np
import tensorflow as tf

# tflearn
import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb

FLAGS = tf.app.flags.FLAGS

27

D
dangqingqing 已提交
28 29 30
class DataSet(object):
    def __init__(self, data, labels):
        assert data.shape[0] == labels.shape[0], (
31
            'data.shape: %s labels.shape: %s' % (data.shape, labels.shape))
D
dangqingqing 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        self._num_examples = data.shape[0]

        self._data = data
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0

    @property
    def data(self):
        return self._data

    @property
    def labels(self):
        return self._labels

    @property
    def num_examples(self):
        return self._num_examples

    @property
    def epochs_completed(self):
        return self._epochs_completed

    def next_batch(self, batch_size):
        assert batch_size <= self._num_examples

        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_examples:
            # Finished epoch
            self._epochs_completed += 1
            # Shuffle the data
            perm = np.arange(self._num_examples)
            np.random.shuffle(perm)
            self._data = self._data[perm]
            self._labels = self._labels[perm]
            # Start next epoch
            start = 0
            self._index_in_epoch = batch_size

        end = self._index_in_epoch

        return self._data[start:end], self._labels[start:end]


def create_datasets(file_path, vocab_size=30000, val_fraction=0.0):

    # IMDB Dataset loading
80 81 82 83 84
    train, test, _ = imdb.load_data(
        path=file_path,
        n_words=vocab_size,
        valid_portion=val_fraction,
        sort_by_len=False)
D
dangqingqing 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    trainX, trainY = train
    testX, testY = test

    # Data preprocessing
    # Sequence padding
    trainX = pad_sequences(trainX, maxlen=FLAGS.max_len, value=0.)
    testX = pad_sequences(testX, maxlen=FLAGS.max_len, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    train_dataset = DataSet(trainX, trainY)

    return train_dataset


def main():
    create_datasets('imdb.pkl')


if __name__ == "__main__":
    main()