layer_helper_base.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import copy
import numpy as np

L
lujun 已提交
20
from .framework import Variable, default_main_program, default_startup_program, in_dygraph_mode, _current_expected_place
21 22 23
from . import unique_name
from .param_attr import ParamAttr, WeightNormParamAttr
from . import core
24
from .initializer import _global_weight_initializer, _global_bias_initializer
25

26 27
__all__ = ['LayerHelperBase']

28 29

class LayerHelperBase(object):
30 31 32
    # global dtype
    __dtype = "float32"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    def __init__(self, name, layer_type):
        self._layer_type = layer_type
        self._name = name

    @property
    def name(self):
        return self._name

    @property
    def layer_type(self):
        return self._layer_type

    @property
    def main_program(self):
        return default_main_program()

    @property
    def startup_program(self):
        return default_startup_program()

53 54 55 56 57 58 59 60
    @classmethod
    def set_default_dtype(cls, dtype):
        cls.__dtype = dtype

    @classmethod
    def get_default_dtype(cls):
        return cls.__dtype

61
    def to_variable(self, value, name=None):
62
        r"""
63 64 65 66 67 68 69 70 71 72
        The API will create a ``Variable`` object from numpy\.ndarray or Variable object.

        Parameters:
            value(ndarray): The numpy\.ndarray object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
            name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

        Returns:
            Variable: ``Tensor`` created from the specified numpy\.ndarray object, data type and shape is the same as ``value`` .

        Examples:
73

74 75 76 77 78 79 80 81
         .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                x = np.ones([2, 2], np.float32)
                y = fluid.dygraph.to_variable(x)
82 83 84

        """
        if isinstance(value, np.ndarray):
L
lujun 已提交
85
            assert in_dygraph_mode(
L
lujun 已提交
86
            ), "to_variable could only be called in dygraph mode"
87 88
            py_var = core.VarBase(
                value=value,
L
Leo Chen 已提交
89
                name=name if name else '',
90 91 92
                persistable=False,
                place=_current_expected_place(),
                zero_copy=False)
93
            return py_var
94
        elif isinstance(value, (core.VarBase, Variable)):
95
            return value
96 97
        else:
            raise TypeError(
98 99
                "The type of input value is invalid, expected type is 'ndarray' or 'Variable', but received %s"
                % type(value))
100 101 102 103 104 105 106 107 108 109 110 111 112 113

    def _create_weight_normalize(self, attr, shape, dtype):
        from .layers import elementwise_mul, elementwise_div, reshape

        # Remove these ops when LayerHelper and layers support indicating
        # program and block.
        def __norm_op(x,
                      out=None,
                      p=2,
                      dim=None,
                      keep_dim=False,
                      block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
114
                    name=unique_name.generate_with_ignorable_key(".".join(
115 116 117 118
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            abs_out = block.create_var(
119
                name=unique_name.generate_with_ignorable_key(".".join(
120 121 122 123 124 125
                    [self.name, 'weight_norm_abs'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='abs', inputs={'X': x}, outputs={'Out': abs_out})
            pow_out = block.create_var(
126
                name=unique_name.generate_with_ignorable_key(".".join(
127 128 129 130 131 132 133 134 135
                    [self.name, 'weight_norm_pow'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='pow',
                inputs={'X': abs_out},
                outputs={'Out': pow_out},
                attrs={'factor': float(p)})
            sum_out = block.create_var(
136
                name=unique_name.generate_with_ignorable_key(".".join(
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                    [self.name, 'weight_norm_sum'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': dim,
                    'keep_dim': keep_dim,
                    'reduce_all': True if dim is None else False
                })
            block.append_op(
                type='pow',
                inputs={'X': sum_out},
                outputs={'Out': out},
                attrs={'factor': 1. / p})
            return out

        def __reshape_op(x,
                         shape,
                         out=None,
                         block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
162
                    name=unique_name.generate_with_ignorable_key(".".join(
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                        [self.name, 'weight_norm_reshape'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='reshape',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'shape': shape})
            return out

        def __transpose_op(x,
                           axis,
                           out=None,
                           block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
179
                    name=unique_name.generate_with_ignorable_key(".".join(
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
                        [self.name, 'weight_norm_transpose'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='transpose',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis})
            return out

        def __norm_except_dim(x,
                              out=None,
                              dim=None,
                              block=self.startup_program.global_block()):
            """Computes the norm over all dimensions except dim"""
            if out is None:
                out = block.create_var(
197
                    name=unique_name.generate_with_ignorable_key(".".join(
198 199 200 201 202 203 204 205
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            if dim is None:
                __norm_op(x, out, dim=dim, block=block)
            elif dim == 0:
                out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
                reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
206
                norm = __norm_op(reshape, dim=[1], block=block)
207 208 209 210
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            elif dim == len(x.shape) - 1:
                out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
                reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
211
                norm = __norm_op(reshape, dim=[0], block=block)
212 213 214 215 216
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            else:
                perm = list(range(len(x.shape)))
                perm[0], perm[dim] = dim, 0
                transpose = __transpose_op(x, perm, block=block)
217 218 219 220 221 222 223
                out_shape = [transpose.shape[0]] + [1] * (len(transpose.shape) -
                                                          1)
                reshape = __reshape_op(
                    transpose, shape=[transpose.shape[0], -1], block=block)
                norm = __norm_op(reshape, dim=[1], block=block)
                reshape2 = __reshape_op(norm, shape=out_shape, block=block)
                __transpose_op(reshape2, perm, out=out, block=block)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
            return out

        def __weight_normalize(g, v, dim):
            """Calculations for weight normalization"""
            norm = __norm_except_dim(
                v, dim=dim, block=self.main_program.current_block())
            scale = elementwise_div(
                x=g, y=norm)  # The shapes of g and norm are the same.
            # Currently, elementwise_mul only support broadcast when the shape
            # of y is a subset of the shape of x. Thus, we reshape y to squeeze
            # to achive the subset.
            w = elementwise_mul(
                x=v,
                y=scale if dim is None else reshape(
                    x=scale, shape=[v.shape[dim]]),
                axis=-1 if dim is None else dim)
            # To serialize the original parameter for inference, maybe a
            # parameter rather than a variable should be returned.
            return w

        g_param_attr = copy.deepcopy(attr)
        g_param_attr.name = attr.name + '_g'
        g_param_shape = [1] * len(shape)
        if attr.dim is not None:
            g_param_shape[attr.dim] = shape[attr.dim]
        v_param_attr = copy.deepcopy(attr)
        v_param_attr.name = attr.name + '_v'
        v_param_shape = shape

        # Add to startup_program to initialize g and v.
        # Try to reconstruct the initializer of w by initializing g and v.
        # Set the initializers of g and v as below, then the distribution
        # of w is the same as initializing w with the given initializer.
        # For Data-Dependent Initialization, please compute the init-values
        # of g and v in external and then feed the values to g and v by
        # executing an extra program.
        g_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=g_param_shape,
            **g_param_attr._to_kwargs(with_initializer=False))
        v_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=v_param_shape,
            **v_param_attr._to_kwargs(with_initializer=True))
        __norm_except_dim(
            x=v_param,
            out=g_param,
            dim=attr.dim,
            block=self.startup_program.global_block())

274 275 276 277 278 279 280
        # keep g_param shape to be consistent with that in main_program
        __reshape_op(
            g_param,
            g_param_shape,
            out=g_param,
            block=self.startup_program.global_block())

281 282 283 284 285 286 287 288 289 290 291 292
        # Add weight normalization to main_program
        g_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs())
        v_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs())
        w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
        return w_param

    # TODO: hide the func after we move the layers to Layers
    def create_parameter(self,
                         attr,
                         shape,
293
                         dtype=None,
294
                         is_bias=False,
295
                         default_initializer=None,
296 297
                         stop_gradient=False,
                         type=core.VarDesc.VarType.LOD_TENSOR):
298 299 300 301
        """Create parameters for this layers.

           Args:
               attr: [ParamAttr] should be the parameter attribute for this parameter
T
tianshuo78520a 已提交
302
               shape: shape of the parameter
303 304 305 306 307 308 309 310
               dtype: data type of this parameter
               is_bias: if this is a bias parameter
               default_initializer: set the default initializer for this parameter

        Returns created parameter Variable.
        """
        # Deepcopy the attr so that parameters can be shared in program
        attr = copy.deepcopy(attr)
311
        attr = ParamAttr._to_attr(attr)
312 313
        if not attr:
            return None
314
        assert isinstance(attr, ParamAttr)
315 316 317
        # set global dtype
        if not dtype:
            dtype = self.__dtype
318 319 320 321 322 323 324 325 326
        if is_bias:
            suffix = 'b'
            default_initializer = _global_bias_initializer(
            ) if _global_bias_initializer() is not None else default_initializer
        else:
            suffix = 'w'
            default_initializer = _global_weight_initializer(
            ) if _global_weight_initializer(
            ) is not None else default_initializer
327 328 329 330 331 332 333
        if attr.name is None:
            attr.name = unique_name.generate(".".join([self.name, suffix]))

        if default_initializer is None and attr.initializer is None:
            if isinstance(dtype, core.VarDesc.VarType):
                if dtype != core.VarDesc.VarType.FP32 and \
                        dtype != core.VarDesc.VarType.FP64 and \
334 335
                        dtype != core.VarDesc.VarType.FP16 and \
                        dtype != core.VarDesc.VarType.BF16:
336 337 338 339
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            else:
340 341
                if not (dtype.startswith("float") or
                        dtype in ["double", "uint16"]):
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            if is_bias:
                attr._set_default_bias_initializer()
            else:
                attr._set_default_param_initializer()
        else:
            attr._set_default_initializer(default_initializer)

        # If weight normalization is set, insert extra parameters and ops.
        # Refer to https://arxiv.org/pdf/1602.07868.pdf
        if isinstance(attr, WeightNormParamAttr):
            param = self._create_weight_normalize(attr, shape, dtype)
            WeightNormParamAttr.params_with_weight_norm.append(param)
            return param
L
lujun 已提交
358
        if in_dygraph_mode():
L
lujun 已提交
359
            # In dygraph mode, we want the returned parameter to be
360
            # initialized so that it can be used imperatively.
H
hong 已提交
361 362 363 364 365 366 367 368
            # check parameter name
            is_used = unique_name.dygraph_parameter_name_checker(attr.name)
            if is_used:
                raise ValueError(
                    "parameter name [{}] have be been used. "
                    "In dygraph mode, the name of parameter can't be same."
                    "Please check the parameter attr value passed to self.create_parameter or "
                    "constructor of dygraph Layers".format(attr.name))
369 370 371
            return self.main_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
372
                type=type,
373
                stop_gradient=stop_gradient,
374 375 376 377 378
                **attr._to_kwargs(with_initializer=True))
        else:
            self.startup_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
379
                type=type,
380 381
                **attr._to_kwargs(with_initializer=True))
            return self.main_program.global_block().create_parameter(
382
                dtype=dtype, shape=shape, type=type, **attr._to_kwargs())
383

384 385 386 387
    def create_variable_for_type_inference(self,
                                           dtype,
                                           stop_gradient=False,
                                           shape=None):
388 389 390 391 392 393 394 395
        """Create a temporary variable that should be type inferred layer.

        Note:
            The default type will be set to LOD_TENSOR. However, when
            the var is used as operator output, its type will be updated
            based on operator's `VarTypeInference` implementation in
            infer_var_type.
        """
396 397 398
        # set global dtype
        if not dtype:
            dtype = self.__dtype
399
        return self.main_program.current_block().create_var(
400 401
            name=unique_name.generate_with_ignorable_key(".".join(
                [self.name, 'tmp'])),
402
            dtype=dtype,
403
            shape=shape,
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=stop_gradient)

    def create_variable(self, *args, **kwargs):
        """Create Variable for this layers.
        Returns created Variable.
        """
        return self.main_program.current_block().create_var(*args, **kwargs)

    def create_global_variable(self, persistable=False, *args, **kwargs):
        """
        create global variable, note that there is no initializer for this global variable.
        Args:
            persistable(bool): True if it is a checkpoint value.
            *args: See create_var's documentation
            **kwargs: See create_var's documentation

        Returns(Variable): the created variable.
        """
        return self.main_program.global_block().create_var(
            *args, persistable=persistable, **kwargs)

    def create_or_get_global_variable(self, name, *args, **kwargs):
        """
        Creates a global variable if not exists and returns the variable and
        a boolean flag which is true when it is a new variable.
        """
        if self.main_program.global_block().has_var(name):
            return self.main_program.global_block().var(name), False
        else:
            return self.create_global_variable(name=name, *args, **kwargs), True

    def set_variable_initializer(self, var, initializer):
        """Set target Variable's initializer

           Args:
               var: target Variable
               initializer: initializer to use
        """
        assert isinstance(var, Variable)
L
lujun 已提交
445
        if in_dygraph_mode():
446
            initializer(var, self.main_program.global_block())
447 448 449 450 451 452 453 454
        else:
            self.startup_program.global_block().create_var(
                name=var.name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
                persistable=True,
                initializer=initializer)