expand_as_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_as_op.h"
#include <memory>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandAsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28 29 30
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandAs");
    OP_INOUT_CHECK(ctx->HasInput("target_tensor"), "Input", "target_tensor",
                   "ExpandAs");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ExpandAs");
31 32
    auto x_dims = ctx->GetInputDim("X");
    auto target_tensor_dims = ctx->GetInputDim("target_tensor");
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(x_dims.size()), target_tensor_dims.size(),
        platform::errors::InvalidArgument(
            "The rank of Input(target_tensor) must be equal "
            "to the rank of Input(X). But received Input(X): input "
            "rank %u, input shape [%s]; received Input(target_tensor): "
            "input rank %u, input shape [%s].",
            x_dims.size(), x_dims, target_tensor_dims.size(),
            target_tensor_dims));
    PADDLE_ENFORCE_LE(
        x_dims.size(), 6,
        platform::errors::InvalidArgument(
            "The rank of Input(X) must not be greater than 6. But "
            "received: input rank %u, input shape [%s].",
            x_dims.size(), x_dims));
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    std::vector<int64_t> out_shape(x_dims.size());
    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
  }
};

class ExpandAsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
    AddInput("target_tensor", "Expand tensor's shape for each dimension.");
    AddComment(R"DOC(
Expand as operator tiles the input by given times number. You should set times
number for each dimension by providing tensor 'expend_tensor'. The rank of X
should be in [1, 6]. Please note that size of 'expend_tensor' must be the same
with X's rank. Following is a using case:
Input(X) is a 3-D tensor with shape [2, 3, 1]:
        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]
target_tensors'shape:  [2, 6, 2]
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]
)DOC");
  }
};

class ExpandAsGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
92 93 94
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandAs");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "ExpandAs");
95 96 97 98 99 100 101

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
Z
Zeng Jinle 已提交
102 103 104 105 106 107 108

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
109 110
};

H
hong 已提交
111 112
template <typename T>
class ExpandAsGradOpMaker : public framework::SingleGradOpMaker<T> {
113
 public:
H
hong 已提交
114
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
115 116

 protected:
117
  void Apply(GradOpPtr<T> op) const override {
118
    op->SetType("expand_as_grad");
H
hong 已提交
119 120 121 122 123
    op->SetInput("X", this->Input("X"));
    op->SetInput("target_tensor", this->Input("target_tensor"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
124 125 126
  }
};

127
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandAsGradNoNeedBufVarsInferer, "X");
128 129 130 131 132 133

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(expand_as, ops::ExpandAsOp, ops::ExpandAsOpMaker,
H
hong 已提交
134 135
                  ops::ExpandAsGradOpMaker<paddle::framework::OpDesc>,
                  ops::ExpandAsGradOpMaker<paddle::imperative::OpBase>);
Z
Zeng Jinle 已提交
136 137
REGISTER_OPERATOR(expand_as_grad, ops::ExpandAsGradOp,
                  ops::ExpandAsGradNoNeedBufVarsInferer);
138 139 140 141
REGISTER_OP_CPU_KERNEL(
    expand_as, ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int>,
142
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int64_t>,
143 144 145
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_CPU_KERNEL(
    expand_as_grad,
146 147
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
148 149
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, double>);
150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
151 152 153 154 155 156 157 158 159 160 161 162 163
REGISTER_OP_CUDA_KERNEL(
    expand_as, ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, bool>);
REGISTER_OP_CUDA_KERNEL(
    expand_as_grad,
    ops::ExpandAsGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ExpandAsGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ExpandAsGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ExpandAsGradKernel<paddle::platform::CUDADeviceContext, double>);
#endif