generator.cc 6.4 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Leo Chen 已提交
15 16 17
#include "paddle/fluid/framework/generator.h"

#include <glog/logging.h>
Y
yaoxuefeng 已提交
18 19
#include <memory>
#include <utility>
Y
yaoxuefeng 已提交
20

21
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
yaoxuefeng 已提交
22
#include "paddle/fluid/platform/enforce.h"
Y
yaoxuefeng 已提交
23 24 25 26

namespace paddle {
namespace framework {

27
const std::shared_ptr<Generator>& DefaultCUDAGenerator(int64_t device_id) {
28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
yaoxuefeng 已提交
29 30 31 32 33 34 35

  static int64_t num_cuda_devices = -1;
  static std::once_flag num_devices_init_flag;
  static std::deque<std::once_flag> cuda_device_flags;
  static std::vector<std::shared_ptr<Generator>> default_cuda_generators;

  std::call_once(num_devices_init_flag, []() {
36
    num_cuda_devices = paddle::platform::GetGPUDeviceCount();
Y
yaoxuefeng 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    cuda_device_flags.resize(num_cuda_devices);
    default_cuda_generators.resize(num_cuda_devices);
  });
  if (device_id < 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "cuda device id shoule be greater than 0"));
  }

  std::call_once(cuda_device_flags[device_id], [device_id]() {
    default_cuda_generators[device_id] =
        std::make_shared<Generator>(GetRandomSeed(), device_id);
    VLOG(4) << "initial seed: "
            << default_cuda_generators[device_id]->GetCurrentSeed();
  });
  return default_cuda_generators[device_id];
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "getDefaultCUDAGenerator only support in CUDA place"));
#endif
}

L
Leo Chen 已提交
58 59 60 61 62 63
const std::shared_ptr<Generator>& DefaultCPUGenerator() {
  static auto default_cpu_generator =
      std::make_shared<Generator>(GetRandomSeed());
  return default_cpu_generator;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
using RNGMap = std::unordered_map<std::string, std::shared_ptr<Generator>>;

static RNGMap& GetRandomSeedGeneratorMap() {
  static auto random_seed_generator_map = RNGMap();
  return random_seed_generator_map;
}

const std::shared_ptr<Generator>& SetRandomSeedGenerator(
    const std::string& name, uint64_t seed) {
  auto& rng_map = GetRandomSeedGeneratorMap();
  auto iter = rng_map.find(name);
  PADDLE_ENFORCE_EQ(iter == rng_map.end(), true,
                    platform::errors::AlreadyExists(
                        "%s RandomSeedGenerator is already exist", name));

  auto generator = std::make_shared<Generator>(seed);
  bool emplace_success = rng_map.emplace(name, generator).second;
  PADDLE_ENFORCE_EQ(
      emplace_success, true,
      platform::errors::PermissionDenied(
          "SetRandomSeedGenerator cannot emplace %s RandomSeedGenerator",
          name));
  return rng_map[name];
}

const std::shared_ptr<Generator>& GetRandomSeedGenerator(
    const std::string& name) {
  auto& rng_map = GetRandomSeedGeneratorMap();
  auto iter = rng_map.find(name);
  PADDLE_ENFORCE_EQ(iter != rng_map.end(), true,
                    platform::errors::NotFound(
                        "%s RandomSeedGenerator is not found, please "
                        "use `set_random_seed_generator` to set rng first",
                        name));
  return iter->second;
}

101 102 103 104 105
// There are 3 conditions:
// (1) op seed is set, use op seed.
// (2) op seed is not set, global seed is set, use global seed.
// (3) op seed is not set, global seed is not set too, use random seed from
// RandomGenerator.
L
Leo Chen 已提交
106
std::shared_ptr<std::mt19937_64> GetCPURandomEngine(uint64_t seed) {
107
  if (seed == 0) {
L
Leo Chen 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    VLOG(4) << "Use random engine from generator";
    return DefaultCPUGenerator()->GetCPUEngine();
  } else {
    // NOTE(zhiqiu): creating an engine instance everytime instead of using
    // OpDefaultCPUEngine(), this is the legacy behavior of random operators.
    // The benefit is that when runing PE with fixed-seed in multiple thrads,
    // each thread has their own engine, and doesn't affect each other.
    //
    // And we need to measure the determinacy of Generator in PE.
    auto engine = std::make_shared<std::mt19937_64>();
    static std::mutex mu_;
    {
      std::lock_guard<std::mutex> lock(mu_);
      engine->seed(seed);
    }
    return engine;
  }
}
Y
yaoxuefeng 已提交
126

127
phi::Generator::GeneratorState Generator::GetState() {
L
Leo Chen 已提交
128 129 130
  std::lock_guard<std::mutex> lock(this->mu_);
  state_.cpu_engine = *engine_;
  return this->state_;
Y
yaoxuefeng 已提交
131 132
}

133
void Generator::SetState(const phi::Generator::GeneratorState& state) {
L
Leo Chen 已提交
134 135 136
  std::lock_guard<std::mutex> lock(this->mu_);
  this->state_ = state;
  this->engine_ = std::make_shared<std::mt19937_64>(state.cpu_engine);
Y
yaoxuefeng 已提交
137 138 139
}

uint64_t Generator::GetCurrentSeed() {
L
Leo Chen 已提交
140 141
  std::lock_guard<std::mutex> lock(this->mu_);
  return this->state_.current_seed;
Y
yaoxuefeng 已提交
142 143 144
}

uint64_t Generator::Seed() {
L
Leo Chen 已提交
145
  std::lock_guard<std::mutex> lock(this->mu_);
Y
yaoxuefeng 已提交
146 147 148
  uint64_t seed;
  std::random_device de;
  seed = ((((uint64_t)de()) << 32) + de()) & 0x1FFFFFFFFFFFFF;
L
Leo Chen 已提交
149
  this->state_.current_seed = seed;
Y
yaoxuefeng 已提交
150
  std::seed_seq seq({seed});
L
Leo Chen 已提交
151
  this->engine_->seed(seq);
Y
yaoxuefeng 已提交
152

L
Leo Chen 已提交
153
  return this->state_.current_seed;
Y
yaoxuefeng 已提交
154 155 156
}

void Generator::SetCurrentSeed(uint64_t seed) {
L
Leo Chen 已提交
157 158
  std::lock_guard<std::mutex> lock(this->mu_);
  this->state_.current_seed = seed;
Y
yaoxuefeng 已提交
159
  this->state_.thread_offset = 0;
Y
yaoxuefeng 已提交
160
  std::seed_seq seq({seed});
L
Leo Chen 已提交
161
  this->engine_->seed(seq);
Y
yaoxuefeng 已提交
162 163
}

L
Leo Chen 已提交
164 165 166
std::shared_ptr<std::mt19937_64> Generator::GetCPUEngine() {
  std::lock_guard<std::mutex> lock(this->mu_);
  return this->engine_;
Y
yaoxuefeng 已提交
167 168
}

L
Leo Chen 已提交
169 170 171
void Generator::SetCPUEngine(std::shared_ptr<std::mt19937_64> engine) {
  std::lock_guard<std::mutex> lock(this->mu_);
  this->engine_ = engine;
Y
yaoxuefeng 已提交
172 173 174
}

uint64_t Generator::Random64() {
L
Leo Chen 已提交
175 176 177 178 179
  std::lock_guard<std::mutex> lock(this->mu_);
  auto engine = this->engine_;
  return (*engine)();
}

Y
yaoxuefeng 已提交
180 181
std::pair<uint64_t, uint64_t> Generator::IncrementOffset(
    uint64_t increament_offset) {
182
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
yaoxuefeng 已提交
183
  std::lock_guard<std::mutex> lock(this->mu_);
184
  uint64_t cur_offset = this->state_.thread_offset;
Y
yaoxuefeng 已提交
185
  this->state_.thread_offset += increament_offset;
186
  return std::make_pair(this->state_.current_seed, cur_offset);
Y
yaoxuefeng 已提交
187 188 189 190 191 192
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Increment Offset only support in CUDA place"));
#endif
}

Y
yaoxuefeng 已提交
193 194
}  // namespace framework
}  // namespace paddle